Direkt zum Inhalt

455 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Pythagoras

PYTHAGORAS VON SAMOS (etwa 580 bis etwa 500 v. Chr.), griechischer Philosoph und Mathematiker

PYTHAGORAS vertrat als Philosoph die mystische Lehre von der Zahl als Urprinzip aller Dinge und von der harmonischen Ordnung als höchstes kosmologisches Gesetz. Seine Lehren sind schwer zu trennen von den Auffassungen des Geheimbundes der Pythagoreer.
Der Satz des Pythagoras kann wohl als bekanntester Satz der (Schul-)Mathematik bezeichnet werden.

Artikel lesen

Satz des Pythagoras

Die Satzgruppe des Pythagoras, voran der Satz des Pythagoras, zählt wegen ihrer großen Bedeutung für Berechnungen und Beweisführungen zu den berühmtesten der Planimetrie. Seine Endeckung wird meist PYTHAGORAS VON SAMOS (um 580 bis 500 v. Chr.) zugeschrieben, was in dieser Absolutheit sicher nicht richtig ist.

Artikel lesen

Pythagoreer

Der Grund, der PYTHAGORAS dazu bewogen haben könnte seine griechische Heimat zu verlassen, ist schwer nachzuvollziehen. Fest steht, dass er als Vierzigjähriger (um 530 v. Chr.) nach Unteritalien in den antiken Ort Kroton, dem heutigen Crotone in Kalabrien, übersiedelte. Dort unterrichte er anfangs die Jugend in griechischer Weisheit. Er benutzte seine Lehrtätigkeit aber vor allem dazu, sich eine Anhängerschaft heranzuziehen, was schließlich in der Gründung einer „Schule“ mündete.

Artikel lesen

Differenzmenge


Die Differenzmenge A \ B (gesprochen: A ohne B) ist die Menge aller Elemente, die in A und nicht in B enthalten sind.
A \ B = { x :       x ∈ A ∧ x ∉ B }

Artikel lesen

Quadrat, allgemein

Ein Viereck, bei dem je zwei benachbarte Seiten zueinander senkrecht und gleich lang sind, heißt Quadrat.
Gleichwertig sind auch folgende Aussagen:

  • Ein Quadrat ist ein Rechteck mit gleich langen Seiten.
  • Ein Quadrat ist eine Raute (ein Rhombus) mit rechten Winkeln.

Das Quadrat ist ein regelmäßiges Viereck.

Artikel lesen

Quadratur des Kreises

Unter der Quadratur des Kreises versteht man die zeichnerische Umwandlung einer Kreisfläche in ein flächeninhaltsgleiches Quadrat nur mithilfe von Zirkel und Lineal.
Die Quadratur des Kreises nur mit Zirkel und Lineal ist unmöglich.
Diese geometrische Konstruktion gehört neben der Dreiteilung eines beliebigen Winkels und der Verdopplung eines Würfels zu den klassischen Problemen der Geometrie.

Artikel lesen

Kongruenz von Figuren

Zwei Figuren F   1 und F   2 sind zueinander kongruent (deckungsgleich) genau dann, wenn sie die gleiche Form und Größe haben.
In zueinander kongruenten Figuren sind alle einander entsprechenden Strecken und Winkel gleich groß.
Kongruente Figuren lassen sich durch eine Verschiebung, eine Spiegelung, eine Drehung oder eine Zusammensetzung von ihnen aufeinander abbilden.

Artikel lesen

Konstruieren mit Software

Der Computer ist in der Geometrie vor allem bei der Veranschaulichung komplexer Objekte und Sachverhalte hilfreich. Geeignete Software kann die Genauigkeit von Konstruktionen deutlich erhöhen.
Generell kann man zwischen statischer Geometriesoftware und dynamischer Geometriesoftware (DGS) unterscheiden.

Artikel lesen

Konstruktionen, Bestimmungslinien

Als geometrische Örter bezeichnet man Mengen von Punkten der Ebene, die eine bestimmte gemeinsame Eigenschaft haben. Liegen diese Punkte alle auf einer (geraden oder gekrümmten) Linie, spricht man von Bestimmungslinien.
Die Grundidee beim Konstruieren mittels Bestimmungslinien besteht darin, dass jeder zu konstruierende Punkt als Schnittpunkt zweier Bestimmungslinien charakterisiert und entsprechend gezeichnet wird.

Artikel lesen

Konstruktionen, Hilfsmittel

Die Verwendung eines Zeichendreiecks oder Geodreiecks kann die Ausführung von Konstruktionsaufgaben erleichtern.

Insbesondere können zu einer vorgegebenen Geraden und einem Punkt

  • die Parallele zur Geraden durch den Punkt und
  • die Senkrechte zur Geraden durch den Punkt

in einem Schritt oder in Teilschritten gezeichnet werden.

Artikel lesen

Kosinussatz

Der Kosinussatz gehört neben dem Sinussatz zu den wichtigsten Sätzen der Trigonometrie. Der Kosinussatz drückt eine Beziehung zwischen den drei Seiten und einem Winkel im Dreieck aus.
Man kann aus zwei Seiten und dem von ihnen eingeschlossenen Winkel die dritte Seite berechnen oder aus drei Seiten einen Winkel.

Artikel lesen

Kreis

Der Kreis ist die Menge aller Punkte der Ebene, die von einem festen Punkt M der Ebene den gleichen Abstand r haben.
M heißt Mittelpunkt, und die Strecke der Länge r, die jeden Punkt des Kreises mit seinem Mittelpunkt verbindet, heißt Radius.
Nach dieser Definition ist der Kreis eine Linie, die Kreislinie. Der Mittelpunkt M gehört nach dieser Definition nicht zum Kreis.
Alle Randpunkte und alle inneren Punkte eines Kreises bilden gemeinsam die Fläche des Kreises, die Kreisfläche.
Aus dem Zusammenhang wird meist deutlich, ob mit dem Wort „Kreis“ die Kreislinie oder die Kreisfläche gemeint ist.

Artikel lesen

Berechnungen am Kreis

Um den Umfang u eines Kreises mit dem Durchmesser d zu bestimmen, kann man von den Umfängen eines einbeschriebenen und eines umbeschriebenen Vielecks ausgehen, z. B. eines regelmäßigen Sechsecks. Für den Umfang des Kreises gilt:
u = π ⋅ d = π ⋅ 2 r

Artikel lesen

Drehung

Eine Drehung um einen Punkt Z mit dem Drehwinkel α ist eine eineindeutige Abbildung der Ebene auf sich selbst, bei der für das Bild P' jedes Punktes P gilt:

  • P' liegt auf dem Kreis um Z durch P.
  • ∢ (P'ZP) = α
Artikel lesen

Sätze über Dreiecke

Zwischen den Winkeln und Seiten in einem Dreieck gelten zahlreiche Zusammenhänge.
So besteht zwischen den Winkeln eines Dreiecks folgende Beziehung:
Die Summe der Innenwinkel eines Dreiecks beträgt 180° (Innenwinkelsummensatz).

Für die Seiten eines Dreiecks gilt folgende Beziehung:
Die Summe der Längen zweier Seiten ist stets größer als die Länge der dritten Seite (Dreiecksungleichung).

Zwischen den Seiten und Winkeln in einem Dreieck gilt folgende Beziehung:
Der längeren von zwei Seiten liegt stets der größere der entsprechenden Innenwinkel gegenüber.

Artikel lesen

Dreiecksarten

Ein Dreieck ist ein geschlossener Streckenzug aus drei Strecken. Die drei Strecken sind die Seiten des Dreiecks. Je zwei Seiten haben einen Eckpunkt gemeinsam.

Artikel lesen

Dreieckskonstruktion

Die Konstruktion von Dreiecken ist anhand sogenannter Bestimmungsstücke mithilfe von Zirkel und Lineal durchführbar. Man unterteilt die Dreieckskonstruktionen in Konstruktionen aus Seiten und Winkeln (Grundkonstruktionen) und in Konstruktionen, bei denen auch weitere Bestimmungsstücke wie Höhen, Winkelhalbierende gegeben sind.

Artikel lesen

Dreiecksungleichung, Beweis

Unter der Dreiecksungleichung wird die Aussage verstanden, nach der in einem Dreieck ABC mit den Seiten a, b und c die Summe von zwei Seitenlängen stets größer ist als die dritte Seitenlänge, z. B. a + b > c .

Artikel lesen

Dreiteilung des Winkels

Die Trisektion (Dreiteilung) eines beliebigen Winkels nur mit Zirkel und Lineal gehört neben der Quadratur des Kreises und der Verdoppelung eines Würfels zu den bekanntesten geometrischen Problemen.
Es lässt sich mithilfe der Algebra nachweisen, dass die exakte Dreiteilung eines beliebigen Winkels nur mit Zirkel und Lineal nicht möglich ist. Lediglich für spezielle Winkelgrößen ( 45 ° , 90 ° , 180 ° u. a.) ist diese Konstruktion ausführbar (Bild 1).

Artikel lesen

Beweise, Allgemeines

Man unterscheidet im Wesentlichen zwei Beweisverfahren, den direkten Beweis und den indirekten Beweis.
Jeder Beweis besteht aus drei Schritten, die schon von EUKLID so angegeben wurden, nämlich
Voraussetzung – Behauptung – Beweis(durchführung).
Wenn eine mathematische Aussage bewiesen werden soll, dann ist es günstig, diese Aussage in Form einer Implikation,
also in „wenn …, dann …“-(oder in „wenn … , so gilt …“-) Form anzugeben. Der auf „wenn“ folgende Satzteil enthält bei einer solchen Formulierung die Voraussetzung, der sich an „dann“ (bzw. „so gilt“) anschließende die Behauptung. Die Umkehrung eines Satzes lässt sich auf diese Weise ebenfalls leichter formulieren.

Artikel lesen

Meter

Das Meter wurde 1795 in Frankreich eingeführt und international durch die sogenannte „Meterkonvention“ – ein am 20.05.1875 unterzeichnetes internationales Abkommen – festgesetzt.
Am 20.10.1983 wurde von der 17. Generalkonferenz für Maße und Gewichte das Meter neu definiert.

Artikel lesen

Mittelsenkrechten im Dreieck

Die Mittelsenkrechten eines Dreiecks sind die Mittelsenkrechten der Dreiecksseiten. Die drei Mittelsenkrechten schneiden einander in genau einem Punkt. Dieser Punkt ist der Mittelpunkt eines Kreises, auf dem alle Eckpunkte des Dreiecks liegen. Man nennt diesen Kreis den Umkreis des Dreiecks.

Artikel lesen

Orthogonalität

Haben zwei Geraden verschiedene Richtungen, so schneiden sie einander in einem Punkt.
Ein Sonderfall für Geraden verschiedener Richtungen sind zueinander senkrechte Geraden.
Zwei Geraden g und h heißen zueinander senkrecht (orthogonal) genau dann, wenn sie sich unter einem rechten Winkel schneiden.

Artikel lesen

Pantograf

Ein Pantograf ist ein Gerät zum maßstäblichen Übertragen von Vorlagen. Seine einfachste Form besteht aus vier Streben, die zu einem in den Eckpunkten beweglichen Parallelogramm zusammengefügt sind.
Das Zeichengerät besitzt einen Fahrstift, mit dem die Linien der Originalzeichnung nachgezeichnet werden, und einen Zeichenstift, der die Zeichnung maßstäblich nachzeichnet.
Als Arbeitsinstrument wird der Pantograf besonders von technischen Zeichnern und Architekten benutzt.

Artikel lesen

Parallelität

Die Geraden g und h sind genau dann zueinander parallel (in Zeichen: g || h), wenn sie keinen Punkt gemeinsam haben oder wenn sie gleich sind.
Zu jeder Geraden g gibt es beliebig viele Parallelen. Beispielsweise durch Parallelverschiebung können sie gezeichnet werden. Durch Angabe eines Punktes P wird aus allen diesen Parallelen eindeutig genau jene Gerade h ausgewählt, die durch P verläuft. Andererseits kann durch jeden Punkt P, der mit einer Geraden in einer Ebene liegt, nicht aber zur Geraden gehört, genau eine Gerade g' gezogen werden, die zu g parallel ist.

Seitennummerierung

  • Previous Page
  • Seite 9
  • Seite 10
  • Aktuelle Seite 11
  • Seite 12
  • Seite 13
  • Seite 14
  • Next Page

455 Suchergebnisse

Fächer
  • Mathematik (455)
Klassen
  • 5. Klasse (455)
  • 6. Klasse (455)
  • 7. Klasse (455)
  • 8. Klasse (455)
  • 9. Klasse (455)
  • 10. Klasse (455)
  • Oberstufe/Abitur (429)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025