Direkt zum Inhalt

455 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Gerade Potenzfunktionen

Funktionen mit Gleichungen der Form y = x n     ( x   ∈ ℝ ,     n ∈   ℤ ) heißen Potenzfunktionen.
Ist der Exponent n in y = f ( x ) = x n eine gerade Zahl (n = 2k mit k ∈ ℤ ), so liegen gerade Funktionen vor.

Artikel lesen

Ungerade Potenzfunktionen

Funktionen mit Gleichungen der Form y = x n     ( x   ∈ ℝ ,     n ∈   ℤ ) heißen Potenzfunktionen.
Ist der Exponent n in y = f ( x ) = x n eine ungerade Zahl (n = 2k + 1 mit k ∈ ℤ ), so liegen ungerade Funktionen vor.

Artikel lesen

Indirekte Proportionalität

Bewegt sich ein Fahrzeug mit gleichbleibender Geschwindigkeit längs eines geradlinigen Weges von 9 km Länge, so hängt nach den Gesetzen der Physik die hierfür benötigt Zeit t von der Größe der Geschwindigkeit v ab.
Es gilt: t = 9 v
(wobei hier v in km/min und t dann in Minuten gemessen sei)
Durch die Gleichung t = 9 v wird jedem Wert von v ( ≠ 0 ) eindeutig ein Wert von t zugeordnet – es handelt sich bei diesem Zusammenhang also um eine Funktion t = f(v).

Artikel lesen

Quadrantenbeziehungen

Für Winkel x mit π 2 < x < 2   π lassen sich aufgrund der Definitionen der Sinus-, der Kosinus- und der Tangensfunktion Zusammenhänge zwischen den Werten dieser Funktionen aus dem I. und dem II. bis IV. Quadranten ableiten. Man nennt diese Zusammenhänge Quadrantenbeziehungen.

Artikel lesen

Quadratische Funktionen, Graphen

Der Graph einer quadratischen Funktion mit der Gleichung y = f   ( x ) = a x 2 + b x + c ist für a = 1 eine (ggf. verschobene) Normalparabel.
Für a ≠ 1 erhalten wir als Graph im Vergleich zum Graphen von y = f   ( x ) = x 2 + b x + c eine (in y-Richtung) gestreckte bzw. gestauchte und gegebenenfalls an der x-Achse gespiegelte Parabel.

Artikel lesen

Speicher elektronischer Taschenrechner


Elektronische Taschenrechner verfügen über einen, meist sogar mehrere Speicher. Einige häufig vorkommende Speicher und die dazugehörigen Speichereingabe- und Speicherrückruftasten werden vorgestellt.

Artikel lesen

Abakus

Der Abakus ist ein bereits im Altertum verwendetes Rechenbrett, das durch Linien in einzelne Felder eingeteilt wurde. Mit ihm konnte addiert, subtrahiert, multipliziert und dividiert, mit einigem Geschick sogar potenziert und radiziert werden.
Der „moderne“ Abakus besteht aus einem Holzrahmen mit eingebauten parallelen Stäben, an denen durchbohrte Kugeln oder Perlen auf- und abgeschoben werden können. Diese Form setzte sich in China als Suan Pan, in Russland als Stschoty und in Japan als Soroban durch.

Artikel lesen

Lineare Ungleichungen, mit zwei Variablen

Zwei Terme, zwischen denen eines der Zeichen < ,     > ,     ≤ ,     ≥  oder  ≠ steht, bilden eine Ungleichung.
Ungleichungen der Form a x + b y + c < 0       ( a ,   b ≠ 0 ) oder solche, die durch äquivalentes Umformen in diese Form überführt werden können, heißen lineare Ungleichungen mit zwei Variablen.

Artikel lesen

Logarithmengleichungen

Logarithmengleichungen nennt man solche Gleichungen, in denen die Variable im Argument des Logarithmus auftritt.

Artikel lesen

Blaise Pascal

BLAISE PASCAL (1623 bis 1662), französischer Mathematiker
* 19. Juni 1623 Clermont
† 19. August 1662 Paris

BLAISE PASCAL schuf gemeinsam mit PIERRE DE FERMAT die Grundlagen der Wahrscheinlichkeitsrechnung. Mit seinem Namen verbunden sind das pascalsche Zahlendreieck, der pascalsche Satz sowie die Rechenmaschine „Pascaline“. Auch auf naturwissenschaftlichem Gebiet war BLAISE PASCAL tätig, er schuf u. a. die Grundlagen der Hydrostatik.

Artikel lesen

Polynomdivision

Der Fundamentalsatz der Algebra sagt aus, dass eine Gleichung n-ten Grades genau n Lösungen hat. Er sagt nichts darüber, wie man diese Lösungen finden kann. Es gibt keine allgemeingültige Lösungsformel!

Wenn diese Lösungen alle in der Menge der reellen Zahlen liegen, so kann das Polynom als Produkt von Linearfaktoren dargestellt werden. Ein Polynom 2. Grades kann in der Form ( x − x 1 ) ( x − x 2 ) dargestellt werden, worin x 1 und x 2 die Wurzeln des Polynoms, d. h. die Lösungen der quadratischen Gleichung x 2 + p x + q = 0 sind. Das Polynom 2. Grades lässt sich also ohne Rest durch ( x − x 1 ) teilen.
Diese Aussage gilt auch für Polynome höheren Grades.

Artikel lesen

Polynome, Koeffizientenbeziehungen

Die Koeffizienten eines Polynoms
P(n) = x n + a n − 1   x n − 1 + a n − 2   x n − 2 + ... + a 1   x + a 0
mit n reellen Nullstellen lassen sich als Summen, Produkte und Summen von Produkten der Nullstellen darstellen.

Artikel lesen

Proben

Unter einer Probe versteht man die Überprüfung des erhaltenen Ergebnisses u. a. durch

  • das Einsetzen der Lösungen in die Ausgangsgleichung,
  • das Prüfen der Lösungen am Aufgabentext,
  • das Ausführen der Umkehroperationen,
  • das Nutzen von Rechenregeln (z. B. Teilbarkeitsregeln) oder
  • das grafische Lösen einer numerischen Aufgabe.
Artikel lesen

Quadratische Ergänzung

Die quadratische Gleichung der Form
  x 2 + p   x + q = 0     (   p ,   q ∈ ℝ   )
heißt Normalform der quadratischen Gleichung. Sie entsteht, indem die quadratische Gleichung der allgemeinen Form   a   x 2 + b   x + c = 0       (   a ,   b ,   c ∈ ℝ    und    a ≠ 0   )
durch die Zahl a (   a ≠ 0   ) dividiert wird.
Quadratische Gleichungen der Normalform lassen sich mithilfe der Lösungsformel lösen.
In einigen Fällen lassen sich die Lösungen bereits mithilfe der quadratischen Ergänzung und der binomischen Formeln bestimmen.

Artikel lesen

Quadratische Gleichungen, Begriffe

Eine Gleichung der Form a   x 2 + b   x + c = 0     (   a ,   b ,   c ∈ ℝ   und   a ≠ 0   ) heißt allgemeine Form der quadratischen Gleichung (Gleichung 2. Grades).

Es heißen:

a   x 2 quadratisches Glied
bx  lineares  Glied
c   absolutes Glied   


Die quadratische Gleichung der Form x 2 + p   x + q = 0     (   p ,   q ∈ ℝ   ) heißt Normalform der quadratischen Gleichung. Sie entsteht, indem die quadratische Gleichung der allgemeinen Form durch die Zahl a (   a ≠ 0   ) dividiert wird.

Artikel lesen

Quadratische Gleichungen, Lösungsformel

Die Gleichung zur Berechnung der beiden Lösungen x 1  und  x 2 der quadratischen Gleichung aus den Parametern p und q heißt Lösungsformel einer quadratischen Gleichung in der Normalform.
Der Term ( p 2 ) 2 − q heißt Diskriminante der quadratischen Gleichung.

Artikel lesen

Sekantennäherungsverfahren

Die regula falsi (das Sekantennäherungsverfahren) gehört zu den Näherungsverfahren zum Bestimmen der Lösungen von Gleichungen, bei denen die Anwendung exakter Verfahren zur Berechnung nicht existieren oder in ihrer Handhabung zu aufwendig sind.
Das gilt z. B. für das Bestimmen der Lösungen von Gleichungen dritten oder höheren Grades mit einer Unbekannten, für Wurzelgleichungen, Exponentialgleichungen, Logarithmengleichungen und trigonometrische Gleichungen. Aber auch die Berechnung krummlinig begrenzter Flächen oder krummflächig begrenzter Körper erfordert meist den Einsatz von Näherungsverfahren.

Artikel lesen

Tabellenkalkulation, grafische Darstellung

Zu den hervorgehobenen Fähigkeiten einer Tabellenkalkulation gehört das Zeichnen von Diagrammen und so auch die grafische Darstellung von Funktionen. Obwohl die unterschiedlichen Kalkulationsprogramme in den Grundfunktionen übereinstimmen, können sie sich in Bezeichnungen und auch in einzelnen Schrittfolgen durchaus voneinander unterscheiden. Die nachfolgenden Beschreibungen beziehen sich deshalb auf die Tabellenkalkulation MS EXCEL.
Zur grafischen Darstellung Funktion f ( x ) = 2 x + 1 x 2 + 3 wird zuerst eine Wertetabelle aufgestellt. Mit den Zahlenpaaren der Tabelle wird dann ein Diagramm erstellt.

Artikel lesen

Niccolò Tartaglia

NICCOLÒ TARTAGLIA (etwa 1500 bis 1557), italienischer Rechenmeister
* 1499 oder 1500 Brescia
† 14. Dezember 1557 Venedig

NICCOLÒ TARTAGLIA war Rechenmeister in seiner italienischen Heimatstadt Brescia sowie u. a. in Verona und Venedig. Anlässlich eines Rechenwettbewerbs beschäftigte sich TARTAGLIA intensiv mit der Lösung kubischer Gleichungen. Durch geschickte Substitution gelang es ihm, eine Lösungsformel für allgemeine kubische Gleichungen zu finden, die heute als cardanische Formel bekannt ist.

Artikel lesen

Trigonometrische Gleichungen und Taschenrechner

Trigonometrische Gleichungen (goniometrische Gleichungen) sind solche Gleichungen, in denen die Unbekannte im Argument von Winkelfunktionen vorkommt. Mithilfe eines Taschenrechners lassen sich derartige Gleichungen lösen. Auf dem Taschenrechner sind die Funktionen, mit denen man bei bekanntem Wert einer trigonometrischen Funktion zum Winkel findet, durch die Bezeichnungen arc sin, arc cos oder arc tan gekennzeichnet. Arkusfunktionen sind die Umkehrfunktionen der trigonometrischen Funktionen.

Artikel lesen

Wilhelm Schickhardt

WILHELM SCHICKHARDT (1592 bis 1635), deutscher Gelehrter
* 22.04.1592 Herrenberg
† 23.10.1635 Tübingen

WILHELM SCHICKHARDT (auch SCHICKART bzw. SCHICKARD) war ein in unterschiedlichen Wissenschaftsgebieten erfolgreicher Gelehrter, zu dessen Leistungen die Entwicklung einer Rechenmaschine für die Grundrechenarten gehört.

Artikel lesen

Gleichungen, Wissenswertes und Historisches

Der Begriff Gleichung geht auf LEONARDO FIBONACCI (etwa 1180 bis etwa 1250) zurück, der ihn in italienischer Sprache als equatio benutzte.
Die Gleichheit zweier Terme wurde lange Zeit verbal ausgedrückt, z. B. durch das lateinische Wort aequatur (gleicht).
Im Zusammenhang mit der Benutzung von Variablen wurde ein Zeichen für die Gleichheit zwingend erforderlich.
Das heutige Gleichheitszeichen „=“ stammt von dem englischen Mathematiker ROBERT RECORDE (1510 bis 1558).

Artikel lesen

Gleichungssysteme, drei Gleichungen

Jede Lösung eines Gleichungssystems aus drei Gleichungen mit drei Variablen ist ein Zahlentripel. Beim Lösen von linearen Gleichungssystemen mit mehr als zwei Gleichungen und Variablen geht man systematisch vor.

Artikel lesen

Lineare Gleichungssysteme

Gleichungssysteme mit mehr als zwei Unbekannten können z. B. mithilfe des gaußschen Algorithmus oder der cramerschen Regel gelöst werden. Die cramersche Regel basiert auf der Berechnung von Determinanten und dem Verfahren von SARRUS.

Artikel lesen

Heron

HERON VON ALEXANDRIA lebte etwa Ende des 1. Jh. in Alexandria. Er war ein äußerst vielseitiger Mathematiker und Physiker, der eine praktische Ausrichtung der Mathematik im Sinne PLATONs betrieb und somit eine zu EUKLID gegensätzliche Auffassung vertrat.
Von seinen Werken war die „Geometrica“, eine Zusammenstellung von Formeln und Aufgaben, besonders populär.

Seitennummerierung

  • Previous Page
  • Seite 3
  • Seite 4
  • Aktuelle Seite 5
  • Seite 6
  • Seite 7
  • Seite 8
  • Next Page

455 Suchergebnisse

Fächer
  • Mathematik (455)
Klassen
  • 5. Klasse (455)
  • 6. Klasse (455)
  • 7. Klasse (455)
  • 8. Klasse (455)
  • 9. Klasse (455)
  • 10. Klasse (455)
  • Oberstufe/Abitur (429)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025