Direkt zum Inhalt

429 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Gabriel Cramer

* 31.07.1704 Genf
† 04.01.1752 Bagnols-sur-Cèze, Frankreich

Die Verdienste des Schweizers GABRIEL CRAMER liegen vor allem darin, dass er wesentlich zur Verbreitung mathematischer Ideen seiner Zeit beigetragen hat.
Mit seinem Namen verbunden ist die cramersche Regel, die zur Lösung linearer Gleichungssysteme mithilfe von Determinanten benutzt wird.

Artikel lesen

Zwei- und dreireihige Determinanten

Die Determinante (Bestimmende) ist eine Funktion, die jeder quadratischen Matrix (n Zeilen und n Spalten) eine reelle Zahl zuordnet (interaktives Rechenbeispiel). Sie kann also als eine Funktion von n 2 Variablen aufgefasst werden und besteht aus Summanden, die Produkte aus den einzelnen Matrixelementen sind.
Der Wert einer Determinante kann mithilfe des Entwicklungssatzes von LAPLACE (über Unterdeterminanten) berechnet werden.
Ein Hilfsmittel für die Berechnung speziell dreireihiger Determinaten ist die Regel von SARRUS.

Artikel lesen

Diophantos von Alexandria

Der griechische (hellenistische) Mathematiker DIOPHANTOS VON ALEXANDRIA lebte um 250 und behandelte lineare und quadratische Gleichungen. Bei ihm finden sich erste Ansätze algebraischer Bezeichnungsweisen und Verfahren. Nach ihm benannt sind die sogenannten diophantischen Gleichungen.

Artikel lesen

Gaußsches Eliminierungsverfahren (Gauß-Algorithmus)

Das auf CARL FRIEDRICH GAUSS (1777 bis 1855) zurückgehende Verfahren beruht auf dem Additions- bzw. Subtraktionsverfahren (Verfahren der gleichen Koeffizienten).
Die Lösungsstrategie besteht in der äquivalenten Umformung des gegebenen Gleichungssystems mit mehreren Variablen (Unbekannten) in eine Gleichung mit nur einer Unbekannten.

Artikel lesen

Lösen von Anwendungsaufgaben mithilfe von Exponentialgleichungen

Eine Reihe von inner- und außermathematischen Anwendungsaufgaben führt auf das Lösen von Exponentialgleichungen.
Als Beispiele werden Aufgaben zur Zinseszinsrechnung, zum atmosphärischen Luftdruck sowie zum Entladen eines Kondensators angegeben.

Artikel lesen

Lösen von Exponentialgleichungen

Eine Gleichung nennt man Exponentialgleichung, wenn mindestens ein freie Variable (Unbekannte) als Exponent auftritt.
Exponentialgleichungen können durch Exponentenvergleich, durch Logarithmieren bzw. auf grafischem Wege gelöst werden.

Artikel lesen

Die cardanische Formel

Eine Lösungsformel für eine kubische Gleichung oder Gleichung dritten Grades wurde in der Renaissance gefunden und im Jahre 1545 veröffentlicht.
Sie ist nach dem italienischen Mathematiker und Arzt GERONIMO CARDANO (1501 bis 1576) benannt, obwohl sie eigentlich auf NICCOLÒ TARTAGLIA (etwa 1500 bis 1557) zurückgeht.

Artikel lesen

Der Fundamentalsatz der Algebra

Welche Aussagen kann man über die Lösungen ganzrationaler Gleichung n-ten Grades der Form
  ∑ i   =   0 n a i x i = a 0 + a 1 x + a 2 x 2 + ... + a n − 1 x n − 1 + a n x n = 0 ;   ( n ∈ ℕ       u n d       a n ≠ 0 )
im Bereich der reellen bzw. im Bereich der komplexen Zahlen treffen?

Artikel lesen

Evariste Galois

* 18. Oktober 1811 Bourg-la-Reine bei Paris
† 31. Mai 1832 Paris

EVARISTE GALOIS gelang eine Klärung der Lösbarkeit algebraischer Gleichungen durch Wurzelgrößen (Radikale). Er benutzte dazu die Gruppentheorie.

Artikel lesen

Gleichungen

Eine Gleichung ist ein mathematischer Ausdruck, bestehend aus zwei Termen, die durch das Gleichheitszeichen verbunden sind. Die beiden Terme heißen linke bzw. rechte Seite der Gleichung.

Artikel lesen

Darstellung von Mengen

Mengen lassen sich in beschreibender oder in aufzählender Form angeben.
Ist x ein Element der Menge M, so schreibt man x ∈ M .
Ist x kein Element der Menge M, so schreibt man x ∉ M .

Artikel lesen

Satz des Pascal

Der von BLAISE PASCAL (1623 bis 1662) gefundene und nach ihm benannte Satz besagt (im allgemeinen Fall) Folgendes:
Ein Sechseck ist genau dann Sehnensechseck eines Kegelschnittes, wenn die Schnittpunkte gegenüberliegender Seiten auf einer Geraden liegen.
Diese Gerade heißt pascalsche Gerade des Sechsecks.

Artikel lesen

Giuseppe Peano

* 27. August 1858 Cuneo, Piemonte
† 20. April 1932 Turin

GIUSEPPE PEANO trug entscheidend zur Weiterentwicklung der mathematischen Logik und zur Herausarbeitung der axiomatischen Methode bei. Des Weiteren wirkte er auf die Symbolik der Mengenlehre.

Von PEANO stammt das (nach ihm benannte und noch heute verwendete) Axiomensystem zum Aufbau der natürlichen Zahlen.

Artikel lesen

Potenzmenge

Die Potenzmenge P(A) von einer Menge A ist die Menge aller Teilmengen von A.
Die Potenzmenge einer Menge A enthält immer die leere Menge und die Menge A selbst.

Artikel lesen

Produktmenge

Die Produktmenge A x B (gesprochen „A kreuz B“) ist die Menge aller geordneten Paare, deren erstes Element aus A und deren zweites Element aus B ist.
A × B = { ( x ;   y ) :       x ∈ A ∧ y ∈ B }
Die Produktmenge ist nicht kommutativ.

Artikel lesen

Pythagoras von Samos

* etwa 580 v.Chr.
† etwa 500 v.Chr.

PYTHAGORAS vertrat als Philosoph die mystische Lehre von der Zahl als Urprinzip aller Dinge und von der harmonischen Ordnung als höchstes kosmologisches Gesetz. Seine Lehren sind schwer zu trennen von den Auffassungen des Geheimbundes der Pythagoreer.
Der Satz des PYTHAGORAS kann wohl als bekanntester Satz der (Schul-)Mathematik bezeichnet werden.

Artikel lesen

Ringe

Der Begriff des Ringes baut auf dem Begriff Gruppe auf und gehört ebenso wie dieser zu den grundlegenden Strukturbegriffen der Algebra. Während bei der Gruppe nur eine zwischen den Elementen erklärte Verknüpfung betrachtet wird, werden beim Ring gleichzeitig zwei Verknüpfungen in ihrem gegenseitigen Zusammenhang betrachtet.
Die Addition und die Multiplikation sind in den Zahlenbereichen ℕ ,       ℤ ,       ℚ ,       ℝ und ℂ Operationen, die distributiv miteinander verknüpft sind.

Ein Beispiel für endliche Ringe sind Restklassenringe.

Artikel lesen

Earl of Bertrand Arthur William Russell

* 18. Mai 1872 Ravenscroft Trellek, Monmouthshire, Wales
† 2. Februar 1970 Penrhyndeudraeth Merioneth, Wales

BERTRAND RUSSELL ist Mitbegründer der modernen mathematischen Logik. Im Jahre 1901 fand er die nach ihm benannte Antinomie der Menge aller Mengen, die sich nicht selbst enthalten.
RUSSELL veröffentlichte zudem zahlreiche philosophische Schriften und Essays.

Artikel lesen

Berühmte mathematische Sätze und Vermutungen

Die Mathematik stellt ein vielfältig verwobenes System von mathematischen Begriffen, Aussagen, Axiomen, Regeln usw. unterschiedlicher Abstraktionshöhe dar, das in einer langen Geschichte gewachsen ist und sich ständig weiterentwickelt. Dieser Prozess hat dabei seine Ursache sowohl in inneren Bedürfnissen der Mathematik selbst als auch in Anforderungen der Praxis.
Aussagen, deren Wahrheitswert noch nicht bewiesen werden konnte, tragen den Charakter von Vermutungen. So stehen die Beweise beispielsweise für die goldbachsche Vermutung oder die Vermutung über Primzahlzwillinge noch aus.

Artikel lesen

Schlussregeln

In der Mathematik ist es häufig erforderlich, neue Aussagen aus schon vorhandenen Aussagen zu gewinnen oder auch zu zeigen, dass sich eine bestimmte Aussage zwingend aus bereits als wahr erkannten Aussagen ergibt. Hierbei werden sogenannte Schlussregeln angewandt.
Man versteht darunter logische Strukturen, die unabhängig von ihrem Inhalt bei jeder Belegung mit den Wahrheitswerten „wahr“ oder „falsch“ stets zu einer wahren Aussagenverbindung führen. Solche Strukturen oder Aussagenverbindungen nennt man logische Identitäten oder auch Tautologien. Die Schlussregeln sind so beschaffen, dass man beim Schließen den Inhalt der Ausgangsaussgen, der Prämissen, gar nicht kennen oder berücksichtigen muss.

Artikel lesen

Stanislaw Marcin Ulam

* 03. April 1909 Lemberg (heute: Lwow, Ukraine)
† 13. Mai 1984 Santa Fe (New, Mexico, USA)

STANISLAW ULAM trug maßgeblich zur Entwicklung der ersten Wasserstoffbombe durch die USA bei. Lange Jahre arbeitete er eng mit JOHN VON NEUMANN zusammen.
ULAM gilt als Begründer der sogenannten Monte-Carlo-Methode, einer Methode zum Simulieren von Zufallsexperimenten mithilfe von Zufallszahlen.

Artikel lesen

John Venn

* 4. August 1834 Hull, Humberside;
† 4. April 1923 Cambridge

JOHN VENN arbeitete vor allem auf dem Gebiet der mathematischen Logik. Bekannt wurde er als Schöpfer von Diagrammen zur mathematischen Logik bzw. Mengenlehre.
Mithilfe eines Systems sich überschneidender Kreise bzw. Ellipsen brachte er Beziehungen zwischen Klassen, Mengen bzw. Begriffen zum Ausdruck. Diese Darstellungen stellen eine Weiterentwicklung von Diagrammen dar, wie sie beispielweise schon bei LEONHARD EULER (eulersche Kreise) verwendet wurden.

Artikel lesen

Vereinigungsmenge

Die Vereinigungsmenge von A und B ( A ∪ B ) ist die Menge aller Elemente, die in A oder in B oder in beiden Mengen enthalten sind.
Man liest: „A vereinigt B“.
A ∪ B = { x :       x ∈ A ∨ x ∈ B }
Das Zeichen „ ∨ “ steht für das „oder“ mit den drei angegebenen Bedeutungen.

Artikel lesen

Muhammad ibn Musa Al-Chwarizmi

* um 780 Bagdad (heute in Irak)
† um 850

MUHAMMAD IBN MUSA AL-CHWARIZMI (manchmal auch AL-KHWARIZMI oder AL-CHARISMI geschrieben) war ein persisch-arabischer Mathematiker, der etwa von 780 (als Geburtsjahre werden mitunter 783 bzw. 787 angegeben) bis etwa 850 lebte und insbesondere am Hofe des Kalifen AL-MANSUR (audh AL-MA'MUN) in Bagdad wirkte.

AL-CHWARIZMI Leistungen für die Mathematik sind bedeutsam. Aus seinem Namen wurde für Handlungsvorschriften der Begriff „Algorithmus“ abgeleitet.

Artikel lesen

Julius Wilhelm Richard Dedekind

* 6. Oktober 1831 Braunschweig
† 12. Februar 1916 Braunschweig

RICHARD DEDEKINDS Hauptinteressen lagen auf dem Gebiet der algebraischen Zahlentheorie. Insbesondere wurde er durch seine theoretische Fundierung der reellen (irrationalen) Zahlen mithilfe des sogenannten dedekindschen Schnittes bekannt.

Seitennummerierung

  • Previous Page
  • Seite 12
  • Seite 13
  • Aktuelle Seite 14
  • Seite 15
  • Seite 16
  • Seite 17
  • Next Page

429 Suchergebnisse

Fächer
  • Mathematik (429)
Klassen
  • 5. Klasse (455)
  • 6. Klasse (455)
  • 7. Klasse (455)
  • 8. Klasse (455)
  • 9. Klasse (455)
  • 10. Klasse (455)
  • Oberstufe/Abitur (429)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025