Direkt zum Inhalt

455 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Glockenförmige Häufigkeitsverteilung

Grafische Darstellungen von Häufigkeitsverteilungen sind oft symmetrisch und lassen für den Fall, dass die Anzahl der Beobachtungsergebnisse nicht zu gering ist, eine annähernd glockenförmige Gestalt erkennen. Lage und Form der „Glocke“ werden durch den Mittelwert x ¯ bzw. die Standardabweichung s bestimmt.

Artikel lesen

Christiaan Huygens

CHRISTIAAN HUYGENS (1629 bis 1695), niederländischer Physiker, Astronom und Mathematiker
* 14. Februar 1629 Den Haag
† 8. Juni 1695 Den Haag

CHRISTIAAN HUYGENS war ein äußerst vielseitiger Naturwissenschaftler. Unter anderem entdeckte er die Doppelbrechung am Kalkspat und erklärte sie mithilfe der Wellennatur des Lichtes. Auch machte er eine Reihe astronomischer Entdeckungen.
HUYGENS beteiligte sich aktiv an der Lösung mathematischer Probleme seiner Zeit, u. a. schuf er eine erste geschlossene Theorie des Würfelspiels.

Artikel lesen

Andrej Nikolajewitsch Kolmogorow

ANDREJ NIKOLAJEWITSCH KOLMOGOROW (1903 bis 1987), sowjetischer (russsischer) Mathematiker
* 25. April 1903 Tambow (Russland)
† 20. Oktober 1987 Moskau

ANDREJ NIKOLAJEWITSCH KOLMOGOROW zählt zu den bedeutendsten Mathematikern des 20. Jahrhunderts. Er leistete fundamentale Beiträge auf nahezu allen Teilgebieten der Mathematik.
Besonders intensiv arbeitete KOLMOGOROW auf dem Gebiet der Wahrscheinlichkeitsrechnung und der mathematischen Statistik, speziell die axiomatische Grundlegung des Wahrscheinlichkeitsbegriffs geht auf ihn zurück.

Artikel lesen

Kombinationen

Zu den typischen kombinatorischen Fragestellungen gehören solche, bei denen Zusammenstellungen von k aus n Elementen betrachtet werden, also eine Auswahl vorgenommen wird.
Werden dabei alle möglichen Reihenfolgen der Elemente betrachtet und unterschieden, so spricht man von Variationen, wird die Reihenfolge nicht berücksichtigt von Kombinationen.
(Der Begriff Kombination wird mitunter auch als Oberbegriff für Variation und Kombination verwendet.)

Artikel lesen

Kombinatorik

Die Kombinatorik ist ein Zweig der Mathematik, der die verschiedenen Möglichkeiten der Anordnung von Objekten oder Zahlen untersucht. Sie ist Grundlage vieler Gebiete der Mathematik, insbesondere der beschreibenden Statistik und Wahrscheinlichkeitsrechnung.

Artikel lesen

Produktmenge

Die Produktmenge A x B (gesprochen: A kreuz B) ist die Menge aller geordneten Paare, deren erstes Element aus A und deren zweites Element aus B ist.
A × B = { ( x ;   y ) :       x ∈ A ∧ y ∈ B }
Die Produktmenge ist nicht kommutativ.

Artikel lesen

Giuseppe Peano

GIUSEPPE PEANO (1858 bis 1932), italienischer Mathematiker und Logiker
* 27. August 1858 Cuneo, Piemonte
† 20. April 1932 Turin

GIUSEPPE PEANO trug entscheidend zur Weiterentwicklung der mathematischen Logik und zur Herausarbeitung der axiomatischen Methode bei. Des Weiteren wirkte er auf die Symbolik der Mengenlehre.
Von PEANO stammt das (nach ihm benannte und noch heute verwendete) Axiomensystem zum Aufbau der natürlichen Zahlen.

Artikel lesen

Vierfeldertafel

Eine Vierfeldertafel ist ein Hilfsmittel, um die gleichzeitige Beobachtung zweier Ereignisse E und F zu erfassen. Auf ihrer Grundlage ist es möglich zu entscheiden, ob die betrachteten Ereignisse voneinander abhängig oder unabhängig sind.

Artikel lesen

Vierteldifferenz

Die Vierteldifferenz bzw. Halbweite ist ein Streuungsmaß, das sich auf den Zentralwert 
x ˜ bezieht. Sie berechnet sich wie folgt aus dem unteren Viertelwert und oberen Viertelwert:
  H = x 3 / 4 − x 1 / 4
Die Halbweite gibt die Länge eines Boxplots an.

Artikel lesen

Wahrscheinlichkeit

Die klassische Definition des Begriffes Wahrscheinlichkeit geht auf PIERRE SIMON LAPLACE zurück. Für den Fall, dass bei einem Zufallsversuch alle Ergebnisse gleichwahrscheinlich sind, definierte er die Wahrscheinlichkeit als Quotienten aus der „Anzahl der günstigen Ergebnisse“ durch die „Anzahl der möglichen Ergebnisse“.
Der russische Mathematiker ANDREJ NIKOLAJEWITSCH KOLMOGOROW fasste den Begriff im Jahre 1933 axiomatisch.

Artikel lesen

Wahrscheinlichkeitsverteilung

Zufallsgrößen X sind dadurch gekennzeichnet, dass sie verschiedene Werte annehmen können, wobei jeder dieser Werte ein zufälliges Ereignis darstellt und mit einer bestimmten Wahrscheinlichkeit auftritt.
Die Funktion, die jedem Wert von X die Wahrscheinlichkeit für sein Eintreten zuordnet, wird Verteilung der Zufallsgröße bzw. Wahrscheinlichkeitsverteilung genannt.

Artikel lesen

Wissenstest - Kenngrößen und Wahrscheinlichkeit

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Kenngrößen und Wahrscheinlichkeit".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Zufallsgrößen

Eine Zufallsgröße X ist dadurch charakterisiert, dass sie bei unter gleichen Bedingungen durchgeführten Versuchen verschiedene Werte annehmen kann. Man unterscheidet zwischen diskreten und stetigen (kontinuierlichen) Zufallsgrößen.
Während bei einer diskreten Zufallsgröße in einem Intervall nur endlich viele Werte x 1 ,   x 2   ...   x n möglich sind, kann eine stetige Zufallsgröße beliebig (unendlich) viele Werte annehmen.

Artikel lesen

Bertrand Russell

BERTRAND RUSSELL (1872 bis 1970), englischer Mathematiker, Logiker und Philosoph
* 18. Mai 1872 Ravenscroft Trellek, Monmouthshire, Wales
† 2. Februar 1970 Penrhyndeudraeth Merioneth, Wales

BERTRAND RUSSELL ist Mitbegründer der modernen mathematischen Logik. Im Jahre 1901 fand er die nach ihm benannte Antinomie der Menge aller Mengen, die sich nicht selbst enthalten.
RUSSELL veröffentlichte zudem zahlreiche philosophische Schriften und Essays.

Artikel lesen

Mengen, Darstellung

Mengen lassen sich in beschreibender oder in aufzählender Form angeben.
Ist x ein Element der Menge M, so schreibt man x ∈ M .
Ist x kein Element der Menge M, so schreibt man x ∉ M .

Artikel lesen

Eratosthenes

ERATOSTHENES VON KYRENE (etwa 276 bis etwa 195 v. Chr.), griechischer Mathematiker und Geograf
* 276 v. Chr. Cyrenaika
† 195 v. Chr.

Der aus der Cyrenaika (einem Küstengebiet des heutigen Libyen) stammende ERATOSTHENES verbrachte die meiste Zeit seines Lebens in Alexandria. Er war vielseitig gebildet, verfasste literaturgeschichtliche und sprachwissenschaftliche Schriften und soll die chronologische Zählung nach Olympiaden angeregt haben. Von seinen Leistungen sind besonders die folgenden zu erwähnen: das Problem der Würfelverdopplung, die Ermittlung der Primzahlen sowie die Berechnung des Erdumfangs.

Artikel lesen

Diagonalverfahren

Obwohl die Menge der gebrochenen Zahlen unendlich und überall dicht ist, kann man die gebrochenen Zahlen eindeutig den natürlichen Zahlen zuordnen, man kann sie abzählen.
Die Menge ℚ + der gebrochenen Zahlen ist abzählbar. Dies geschieht nach dem sogenannten cantorschen Diagonalverfahren (benannt nach GEORG CANTOR, 1845 bis 1918).

Artikel lesen

Richard Dedekind

RICHARD DEDEKIND (1831 bis 1916), deutscher Mathematiker
* 06. Oktober 1831 Braunschweig
† 12. Februar 1916 Braunschweig

RICHARD DEDEKINDs Hauptinteressen lagen auf dem Gebiet der algebraischen Zahlentheorie. Insbesondere wurde er durch seine theoretische Fundierung der reellen (irrationalen) Zahlen mithilfe des sogenannten dedekindschen Schnittes bekannt.

Artikel lesen

Fibonacci

LEONARDO FIBONACCI VON PISA (etwa 1180 bis 1250), italienischer Mathematiker

LEONARDO VON PISA (auch FIBONACCI) gilt als der erste europäische „Fachmathematiker“ des Mittelalters. Er behandelte vor allem zahlentheoretische Probleme, wobei die von ihm angegebenen Lösungsverfahren über die Kenntnisse des arabischen und auch des griechischen Kulturkreises hinausgingen.

Artikel lesen

Bruchumwandlungen

Endliche Dezimalbrüche mit n Stellen nach dem Komma können als gemeine Brüche mit dem Nenner 10 n geschrieben werden.
Auch periodische Dezimalbrüche lassen sich in gemeine Brüche umwandeln.

Artikel lesen

Dezimalbrüche, Multiplikation

Sollen Dezimalbrüche multipliziert werden, lässt man das Komma zunächst unberücksichtigt und multipliziert die so entstehenden natürlichen Zahlen. Danach ist zu entscheiden, an welche Stelle des Resultates das Komma zu setzen ist.
Dabei gilt:
Hat der erste Faktor n Stellen nach dem Komma und der zweite Faktor m Stellen nach dem Komma, so hat das Produkt m + n Stellen nach dem Komma. Gegebenenfalls müssen Nullen ergänzt werden.

Artikel lesen

Ganze Zahlen, Historisches

Negative Zahlen galten lange Zeiten als suspekt. DIOPHANT VON ALEXANDRIA (um 250) beschäftigte sich mit zahlentheoretischen Fragen und dem Lösen von Gleichungen. Er wusste, dass es auch negative Lösungen gab, ließ diese aber nicht gelten. Im indischen Kulturkreis wurden negative Zahlen z. B. zum Beschreiben von Schulden angewandt. In Europa führten erst Mathematiker der Renaissance negative Zahlen im Zusammenhang mit dem Lösen von Gleichungen ein.

Artikel lesen

Flächeneinheiten

Die Basiseinheit für Flächen ist der Quadratmeter ( m 2 ). Für größere oder kleinere Flächen verwendet man Einheiten, die durch Vervielfachen mit Potenzen von 100 = 10 2 aus dem Quadratmeter abgeleitet sind, wie z. B. Quadratkilometer ( k m 2 ), Hektar (ha), Ar (a), Quadratdezimeter ( d m 2 ), Quadratzentimeter
( c m 2 ), Quadratmillimeter ( m m 2 ).

Artikel lesen

Pierre de Fermat

PIERRE DE FERMAT (1601 bis 1665), französischer Mathematiker
* 20. August 1601 Beaumont
† 12. Januar 1665 Castres

PIERRE DE FERMAT begründete neben RENÉ DESCARTES die analytische Geometrie. Des Weiteren arbeitete er auf den Gebieten der Zahlentheorie und war an der Ausarbeitung von Grundlagen der Wahrscheinlichkeitsrechnung beteiligt. FERMAT führte einen regen wissenschaftlichen Briefwechsel mit Mathematikern seiner Zeit wie RENÉ DESCARTES und BLAISE PASCAL. Eine besondere Berühmtheit erlangte sein Name im Zusammenhang mit dem sogenannten (großen) Satz von Fermat, dessen Beweis viele Generationen von Mathematikern beschäftigte und erst im Jahre 1994 durch einen britischen Wissenschaftler gelang.

Artikel lesen

Einheiten, Vorsätze

Einheiten von Größen werden als Vielfache oder Bruchteile der Basiseinheit angegeben. Dabei ist es (von einigen Ausnahmen abgesehen) üblich, ausschließlich Potenzen von Zehn als Faktoren, mit dem die Basiseinheit jeweils zu multiplizieren ist, zuzulassen.

Seitennummerierung

  • Previous Page
  • Seite 14
  • Seite 15
  • Seite 16
  • Aktuelle Seite 17
  • Seite 18
  • Seite 19
  • Next Page

455 Suchergebnisse

Fächer
  • Mathematik (455)
Klassen
  • 5. Klasse (455)
  • 6. Klasse (455)
  • 7. Klasse (455)
  • 8. Klasse (455)
  • 9. Klasse (455)
  • 10. Klasse (455)
  • Oberstufe/Abitur (429)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025