Direkt zum Inhalt

242 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Bremsen

Bremsen bei Fahrzeugen sind für die Betriebssicherheit unerlässlich. Je nach der Bauart unterscheidet man zwischen Trommelbremsen und Scheibenbremsen. In beiden Fällen wird für das Abbremsen von Fahrzeugen die Gleitreibung zwischen speziellen Bremsbelägen und einer Bremstrommel bzw. Bremsscheibe genutzt. Dabei wird mechanische Energie in thermische Energie umgewandelt, die in Form von Wärme an die Umgebung abgegeben wird.

Artikel lesen

Dichte von Stoffen

Die Dichte gibt an, welche Masse ein Kubikzentimeter Volumen eines Stoffes hat.

Formelzeichen: ρ
Einheiten:ein Gramm je Kubikzentimeter ( 1 g c m 3 )
 ein Kilogramm je Kubikmeter ( 1 k g m 3 )
 ein Gramm je Liter ( g l )

Die Dichte ist eine für jeden Stoff charakteristische Stoffkonstante. Sie ist abhängig von der Temperatur und vom Druck.

Artikel lesen

Drehimpuls

Bei der Translation charakterisiert der Impuls den Bewegungszustand eines Körpers. In analoger Weise lässt sich bei der Rotation der Bewegungszustand eines rotierenden starren Körpers durch die physikalische Größe Drehimpuls kennzeichnen. Der Drehimpuls eines Körpers kann berechnet werden mit der Gleichung:

L → = J ⋅ ω → J Trägheitsmoment des Körpers ω → Winkelgschwindigkeit

Artikel lesen

Drehmoment und Drehmomentensatz

Bei Schraubenschlüsseln, Türklinken, Fahrrädern, Flaschenöffnern, Waagen oder Sportgeräten wirken Kräfte auf drehbare Körper. Das Drehmoment oder Kraftmoment ist die analoge Größe zur Kraft. Während die Kraft die Wirkung auf einen Körper beschreibt, der als Massepunkt angesehen werden kann und eine translatorische Bewegung ausführt, beschreibt das Drehmoment die Wirkung einer außerhalb der Drehachse angreifenden Kraft auf einen drehbar gelagerten starren Körper. Diese Wirkung kann durch solche Größen wie Drehwinkel, Winkelgeschwindigkeit und Winkelbeschleunigung beschrieben werden. Für das Drehmoment gilt:

M → = r → × F → und unter der Bedingung , dass die Kraft senkrecht am Hebel angreift , M = r ⋅ F .

Artikel lesen

Der Druck

Der Druck gibt an, mit welcher Kraft ein Körper auf eine Fläche von einem Quadratmeter wirkt.

Formelzeichen:p
Einheit:ein Pascal (1 Pa)

Der Druck kann allgemein berechnet werden mit der Gleichung: p = F A
Ein Pascal (1 Pa) ist die Abkürzung für die Einheit ein Newton je Quadratmeter. Benannt ist die Einheit nach dem französischen Mathematiker und Physiker BLAISE PASCAL (1623-1662).
Druck kann in Flüssigkeiten und in Gasen auftreten. Auch feste Körper können auf andere Körper Druck ausüben.

Artikel lesen

Eigenschaften mechanischer Wellen im Überblick

Mechanische Wellen, z. B. Wasserwellen oder Schallwellen, haben eine Reihe von charakteristischen Eigenschaften. Sie breiten sich von einem Erreger (Quelle) aus mit einer bestimmten Geschwindigkeit fort. Mit Wellen wird Energie, aber kein Stoff transportiert. Wellen können reflektiert und gebrochen werden. Es können auch Beugung und Interferenz (Überlagerung) auftreten. Darüber hinaus können mechanische Wellen absorbiert, gestreut oder polarisiert werden. Ebenfalls zu beobachten ist bei mechanischen Wellen Dispersion.

Artikel lesen

Mechanische Energie und ihre Erhaltung

Mechanische Energie ist die Fähigkeit eines Körpers, aufgrund seiner Lage oder seiner Bewegung mechanische Arbeit zu verrichten, Wärme abzugeben oder Strahlung auszusenden.

Formelzeichen: E mech
Einheiten:ein Joule (1 J)
ein Newtonmeter (1 Nm)


Spezielle Formen mechanischer Energie sind die potenzielle Energie und die kinetische Energie.
Für ein abgeschlossenes mechanisches System gilt der Energieerhaltungssatz der Mechanik.

Artikel lesen

Energie und Arbeit im Gravitationsfeld

Um eine Weltraumstation oder einen Satelliten in den Orbit zu bringen, ist eine bestimmte Arbeit im Gravitationsfeld der Erde erforderlich. Darüber hinaus muss der Station oder dem Satelliten eine bestimmte Geschwindigkeit verliehen werden, damit sie sich auf einer stabilen Bahn bewegen. Die Körper besitzen damit potenzielle und kinetische Energie. Arbeit und potenzielle Energie im Gravitationsfeld können mithilfe des Gravitationsgesetzes berechnet werden, die kinetische Energie ergibt sich aus der Masse und der Geschwindigkeit des Körpers.

Artikel lesen

Strömende Flüssigkeiten und Gase

Eine Strömung ist die gerichtete Bewegung eines Gases oder einer Flüssigkeit gegenüber einem Körper. Beispiele dafür sind strömendes Wasser in einem Fluss, strömendes Öl in einer Pipeline, strömendes Gas in einem Gasrohr oder die gegenüber einem Auto strömende Luft. Strömungen können mithilfe von Stromlinienbildern als Modell dargestellt werden. Unterschieden werden glatte (laminare) Strömungen und verwirbelte (turbulente) Strömungen.
Besteht zwischen einem Körper und einer strömenden Flüssigkeit bzw. einem strömenden Gas eine Relativbewegung, so tritt ein Strömungswiderstand auf. Handelt es sich bei dem Stoff um Luft, so spricht man vom Luftwiderstand und von der Luftwiderstandskraft.

Artikel lesen

Tonhöhe und Lautstärke

Wie wir Schall empfinden, hängt in starkem Maße von der Tonhöhe und der Lautstärke ab. Beides sind keine physikalischen, sondern physiologische Größen. Die Tonhöhe wird durch die Frequenz (Schnelligkeit der Druckschwankungen) bestimmt. Je größer die Frequenz der Schwingungen ist, desto höher ist der Ton. Die Lautstärke wird durch die Amplitude der Schwingungen (Größe der Druckschwankungen) bestimmt. Je größer die Amplitude der Schwingungen ist, desto lauter ist der Ton. Die Lautstärke wird in der Einheit Phon (phon) angegeben und kann mit Schallpegelmessern bestimmt werden.

Artikel lesen

Trägheitskräfte

Trägheitskräfte, auch Scheinkräfte genannt, treten in beschleunigten Bezugssystemen als real wirkende Kräfte auf. Sie wirken stets entgegen der Beschleunigung. Das gilt bei einer geradlinigen Bewegung ebenso wie bei einer Kreisbewegung. Dort werden sie als Zentrifugalkräfte bezeichnet.
Auch ein mit der Erdoberfläche verbundenes Bezugssystem ist aufgrund der Rotation der Erde um ihre Achse ein beschleunigtes Bezugssystem. Demzufolge wirkt auf jeden Körper, der sich auf der Erdoberfläche befindet, eine Trägheitskraft.
Eine weitere spezielle Trägheitskraft, die auf bewegte Körper auf der Erdoberfläche und damit auch auf fließendes Wasser oder bewegte Luftmassen wirkt, ist die CORIOLIS-Kraft.

Artikel lesen

Trägheitsmomente

Bei einer geradlinigen Bewegung hängt die Änderung des Bewegungszustandes eines Körpers von der wirkenden Kraft und von der Masse des Körpers ab. Die analogen Größen bei der Rotation sind des Drehmoment und das Trägheitsmoment.

Das Trägheitsmoment gibt an, wie träge ein drehbar gelagerter Körper gegenüber der Änderung seines Bewegungszustandes ist.
Formelzeichen: J
Einheit: ein Kilogramm mal Quadratmeter ( 1   kg ⋅ m 2 )

Allgemein gilt für das Trägheitsmoment: J = ∑ i = 1 n m i ⋅ r i 2 oder J = ∫ r 2   d m

Artikel lesen

Überlagerung gleichförmiger Bewegungen

Setzt sich die Bewegung eines Körpers aus zwei gleichförmigen Teilbewegungen zusammen, so spricht man von einer Überlagerung oder Superposition gleichförmiger Bewegungen. Die Teilbewegungen können die gleiche Richtung oder die entgegengesetzte Richtung haben oder einen beliebigen Winkel zueinander bilden.
Die beiden Teilbewegungen ergeben eine resultierende Bewegung (zusammengesetzte Bewegung). Für diese resultierende Bewegung können Wege und Geschwindigkeiten rechnerisch oder zeichnerisch ermittelt werden. Dabei ist der vektorielle Charakter von Weg und Geschwindigkeit zu beachten.

Artikel lesen

Überlagerung gleichförmiger und gleichmäßig beschleunigter Bewegungen

Setzt sich die Bewegung eines Körpers aus einer gleichförmigen und einer gleichmäßig beschleunigten Bewegung zusammen, so spricht man von einer Überlagerung oder Superposition von Bewegungen. Die Teilbewegungen können die gleiche Richtung oder die entgegengesetzte Richtung haben oder einen beliebigen Winkel zueinander bilden.
Die beiden Teilbewegungen ergeben eine resultierende (zusammengesetzte) Bewegung. Für diese resultierende Bewegung können Wege und Geschwindigkeiten rechnerisch oder zeichnerisch ermittelt werden. Dabei ist der vektorielle Charakter von Weg und Geschwindigkeit zu beachten.

Artikel lesen

Volumen von Körpern

Das Volumen (der Rauminhalt) gibt an, wie viel Raum ein Körper einnimmt.

Formelzeichen:
Einheiten:
V
1 Kubikmeter (1 m 3 )
1 Liter (1 l)


Spezielle Volumeneinheiten sind ein Barrel (1 barrel) und eine Bruttoregistertonne (1 BRT). Das Volumen kann berechnet, mit Messzylindern oder Durchflusszählern direkt gemessen oder experimentell ermittelt werden.

Artikel lesen

Waagerechter Wurf

Unter einem waagerechten Wurf versteht man die Überlagerung (Superposition) einer gleichförmigen Bewegung mit der Anfangsgeschwindigkeit (Abwurfgeschwindigkeit) in horizontaler Richtung und des freien Falls senkrecht dazu.
Die beiden Teilbewegungen ergeben eine resultierende (zusammengesetzte) Bewegung. Für diese resultierende Bewegung können Wege und Geschwindigkeiten rechnerisch oder zeichnerisch ermittelt werden.
Dabei ist der vektorielle Charakter von Weg und Geschwindigkeit zu beachten.
Als Bahnkurve ergibt sich eine typische Wurfparabel (Bild 1).

Artikel lesen

Der Wirkungsgrad

Der Wirkungsgrad eines Gerätes, einer Anlage oder eines Lebewesens gibt an, welcher Anteil der zugeführten Energie in nutzbringende Energie umgewandelt wird.

Formelzeichen:
Einheit:
η
1 oder in Prozent (%)

Der Wirkungsgrad ist damit ein Maß für die Güte der Energieumwandlung bzw. ein Maß für den Grad der Nutzbarkeit der zugeführten Energie. Er ist immer kleiner als 1 bzw. kleiner als 100 %.

Artikel lesen

Zentraler gerader elastischer Stoß

Ein zentraler elastischer Stoß zwischen zwei Körpern ist dadurch gekennzeichnet, dass

  • nur elastischen Wechselwirkungen auftreten,
  • sich die Körper nach dem Stoß mit unterschiedlichen Geschwindigkeiten weiterbewegen und
  • die mechanische Energie erhalten bleibt.

Für einen solchen Stoß gilt der Impulserhaltungssatz und der Energieerhaltungssatz der Mechanik.

Artikel lesen

Zentraler gerader unelastischer Stoß

Energiebilanz, Energieerhaltungssatz, Energieerhaltungssatz der Mechanik, Impulserhaltungssatz, Reibuntgseffekte, zentraler gerader unelastischer Stoß
Ein zentraler unelastischer Stoß zwischen zwei Körpern ist dadurch gekennzeichnet, dass

  • keine elastischen Wechselwirkungen auftreten,
  • sich die Körper nach dem Stoß mit einer gemeinsamen Geschwindigkeit weiterbewegen und
  • ein Teil der mechanischen Energie in andere Energieformen umgewandelt wird.

Für einen solchen Stoß gilt der Impulserhaltungssatz und der allgemeine Energieerhaltungssatz, nicht aber der Energieerhaltungssatz der Mechanik.

Artikel lesen

Zustandsgleichung für das ideale Gas

Zwischen Druck p, Volumen V und absoluter Temperatur T des idealen Gases besteht folgender Zusammenhang:

p ⋅ V T = konstant oder p 1 ⋅ V 1 T 1 = p 2 ⋅ V 2 T 2

Für ein reales Gas ist die Zustandsgleichung anwendbar, wenn sich dieses näherungsweise wie das ideale Gas verhält. Das ist für fast alle Gase bei Zimmertemperatur der Fall.

Bezieht man die Gaskonstanten und andere Konstanten mit ein, so kann man die allgemeine Zustandsgleichung auch noch in weiteren Formen schreiben.

Artikel lesen

Anzahl und Abmessungen von Atomen

Feste, flüssige und gasförmige Stoffe bestehen aus Atomen bzw. Molekülen. Deren Existenz war lange umstritten und konnte erst sicher am Anfang des 20. Jahrhunderts nachgewiesen werden. Die Anzahl von Atomen je Mol beträgt 6,022 ⋅ 10 23 (AVOGADRO-Konstante). Damit sind in einem Gramm eines Stoffes ca. 10 22 Atome enthalten. Die Masse von Atomen liegt zwischen 10 − 27 kg und 10 -24 kg , der Radius von Atomen in der Größenordnung von 10 − 10   m und der Kernradius bei 10 15   m . Aus ihm ergibt sich die Dichte der Kernmaterie, die für alle Atomkerne annähernd gleich groß ist und einen Wert von 1,8 ⋅ 10 17   kg m 3 = 1,8 ⋅ 10 14   g cm 3 hat. Die Abmessungen von Atomen können in unterschiedlicher Weise bestimmt werden. Im Beitrag sind Möglichkeiten dafür angegeben.

Artikel lesen

Elektrisches Potenzial und elektrische Spannung

Ähnlich wie beim Gravitationsfeld wird auch beim elektrischen Feld ein Potenzial definiert. Unter dem elektrischen Potenzial eines Punktes versteht man den Quotienten aus der potenziellen Energie in diesem Punkt und der Ladung des Körpers. Sein Betrag hängt nur vom Ort und von der felderzeugenden Ladung ab. Das Potenzial ist demzufolge geeignet, ein Feld zu beschreiben. Das kann auch grafisch mit Äquipotenziallinien in der Ebene oder Äquipotenzialflächen im Raum erfolgen.
Die elektrische Spannung zwischen zwei beliebigen Punkten eines elektrischen Feldes ist gleich der Potenzialdifferenz zwischen diesen beiden Punkten.

Artikel lesen

Feldstärke und dielektrische Verschiebung

Elektrische Felder können mithilfe von Feldlinienbildern beschrieben werden. Zur ihrer quantitativen Beschreibung nutzt man die feldbeschreibenden Größen elektrische Feldstärke und dielektrische Verschiebung. Die elektrische Feldstärke E ist definiert als Quotient aus der Kraft F, die das Feld auf einen positiv geladenen Probekörper ausübt, und dessen Ladung Q:
E → = F → Q
Die dielektrische Verschiebung D (Verschiebungsdichte) ist ein Maß für die auf einer Fläche im elektrischen Feld durch Influenz hervorgerufenen Ladung:
D = Q A
Beide Größen sind durch die elektrische Feldkonstante und die Permittivitätszahl miteinander verbunden:
D → = ε 0 ⋅ ε r ⋅ E →
Bevorzugt wird mit der elektrischen Feldstärke gearbeitet.

Artikel lesen

Magnetische Flussdichte und magnetische Feldstärke

Ein magnetisches Feld kann man mit dem Modell Feldlinienbild kennzeichnen. Quantitativ lässt es sich durch die feldbeschreibenden Größen magnetische Flussdichte und magnetische Feldstärke charakterisieren. Die magnetische Flussdichte B, die heute vorzugsweise verwendet wird, ist folgendermaßen definiert:
B = F Ι ⋅ l
Die magnetische Feldstärke H ist mit der magnetischen Flussdichte folgendermaßen verknüpft:
B = μ 0 ⋅ μ r ⋅ H

Artikel lesen

Geladene Teilchen in magnetischen Feldern

Geladene Teilchen (Elektronen, Protonen, Ionen) können sich in magnetischen Feldern bewegen und werden durch diese beeinflusst. Ursache dafür ist die LORENTZ-Kraft, die auf bewegte Ladungsträger in magnetischen Feldern wirkt und die mit der Gleichung F → L = Q ⋅   ( v → × B → ) berechnet werden kann.
Je nach der Bewegungsrichtung der Teilchen kann die LORENTZ-Kraft zu einer kreisförmigen oder einer spiralförmigen Bewegung der geladenen Teilchen führen. Bewegen sich die Teilchen parallel zu den Feldlinien des Magnetfeldes und damit in der Richtung, die die magnetische Flussdichte B hat, dann erfolgt keine Beeinflussung. In homogenen magnetischen Feldern kann die Bewegung der geladenen Teilchen relativ einfach beschrieben werden.

Seitennummerierung

  • Previous Page
  • Seite 1
  • Seite 2
  • Aktuelle Seite 3
  • Seite 4
  • Seite 5
  • Seite 6
  • Next Page

242 Suchergebnisse

Fächer
  • Chemie (2)
  • Kunst (1)
  • Mathematik (99)
  • Physik (139)
  • Politik/Wirtschaft (1)
Klassen
  • 5. Klasse (21)
  • 6. Klasse (21)
  • 7. Klasse (21)
  • 8. Klasse (21)
  • 9. Klasse (21)
  • 10. Klasse (21)
  • Oberstufe/Abitur (242)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2026