Direkt zum Inhalt

242 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Geometrische Zahlenfolgen

Eine Zahlenfolge, für die a n = a 1 ⋅ q n − 1 gilt, heißt geometrische Folge.
Eine geometrische Folge ist dadurch charakterisiert, dass die Folgeglieder jeweils durch Multiplikation mit dem konstanten Faktor q aus dem vorhergehenden Glied entstehen.
Jedes Folgenglied (außer dem ersten) ist das geometrische Mittel seiner beiden Nachbarglieder.

Artikel lesen

Einkommensteuerfunktion

Nach dem Einkommensteuergesetz (EStG) sind in der Bundesrepublik Deutschland alle Personen, die ihren Wohnsitz oder gewöhnlichen Aufenthalt im Inland haben, unbeschränkt mit sämtlichen Einkünften steuerpflichtig.

Die Besteuerung im Einzelnen wird durch das EStG geregelt. Hier ist auch festgelegt, wie sich aus den Gesamteinkünften das zu versteuernde Einkommen ergibt. Dies ist im Allgemeinen geringer als die Summe der Einkünfte, weil z.B. Vorsorgeaufwendungen, Werbungskosten und steuerfreie Einnahmen (wie Arbeitslosengeld, Altersrenten bis auf eine Ertragsanteil) abgezogen werden können.

Für die Praxis stehen detaillierte Einkommensteuertabellen zur Verfügung, aus denen die für ein bestimmtes Einkommen zu zahlende Steuer direkt abgelesen werden kann. Hinter diesen Tabellen steht die sogenannte Steuerfunktion.

Artikel lesen

Exponentialfunktionen

Funktionen mit Gleichungen der Form
  y = f ( x ) = a x   ( a ∈ ℝ ;       a > 0   ;   a ≠ 1 )
heißen Exponentialfunktionen.
Ihr Definitionsbereich ist die Menge ℝ der reellen Zahlen.

Artikel lesen

Ganzrationale Funktionen

Eine Funktion f , deren Funktionsterm ein Polynom ist, heißt ganzrationale Funktion (bzw. Polynomfunktion).
Ganzrationale Funktionen haben die folgende Form:
  f ( x ) = a n x n + a n − 1 x n − 1 + ... + a 2 x 2 + a 1 x + a 0           ( mit        n ∈ ℕ        und        a i ∈ ℝ )
Ist a n ≠ 0 , so hat f den Grad n .

Artikel lesen

Volumen von Körpern

Das Volumen (der Rauminhalt) gibt an, wie viel Raum ein Körper einnimmt.

Formelzeichen:
Einheiten:
V
1 Kubikmeter (1 m 3 )
1 Liter (1 l)


Spezielle Volumeneinheiten sind ein Barrel (1 barrel) und eine Bruttoregistertonne (1 BRT). Das Volumen kann berechnet, mit Messzylindern oder Durchflusszählern direkt gemessen oder experimentell ermittelt werden.

Artikel lesen

Waagerechter Wurf

Unter einem waagerechten Wurf versteht man die Überlagerung (Superposition) einer gleichförmigen Bewegung mit der Anfangsgeschwindigkeit (Abwurfgeschwindigkeit) in horizontaler Richtung und des freien Falls senkrecht dazu.
Die beiden Teilbewegungen ergeben eine resultierende (zusammengesetzte) Bewegung. Für diese resultierende Bewegung können Wege und Geschwindigkeiten rechnerisch oder zeichnerisch ermittelt werden.
Dabei ist der vektorielle Charakter von Weg und Geschwindigkeit zu beachten.
Als Bahnkurve ergibt sich eine typische Wurfparabel (Bild 1).

Artikel lesen

Der Wirkungsgrad

Der Wirkungsgrad eines Gerätes, einer Anlage oder eines Lebewesens gibt an, welcher Anteil der zugeführten Energie in nutzbringende Energie umgewandelt wird.

Formelzeichen:
Einheit:
η
1 oder in Prozent (%)

Der Wirkungsgrad ist damit ein Maß für die Güte der Energieumwandlung bzw. ein Maß für den Grad der Nutzbarkeit der zugeführten Energie. Er ist immer kleiner als 1 bzw. kleiner als 100 %.

Artikel lesen

Zentraler gerader elastischer Stoß

Ein zentraler elastischer Stoß zwischen zwei Körpern ist dadurch gekennzeichnet, dass

  • nur elastischen Wechselwirkungen auftreten,
  • sich die Körper nach dem Stoß mit unterschiedlichen Geschwindigkeiten weiterbewegen und
  • die mechanische Energie erhalten bleibt.

Für einen solchen Stoß gilt der Impulserhaltungssatz und der Energieerhaltungssatz der Mechanik.

Artikel lesen

Zentraler gerader unelastischer Stoß

Energiebilanz, Energieerhaltungssatz, Energieerhaltungssatz der Mechanik, Impulserhaltungssatz, Reibuntgseffekte, zentraler gerader unelastischer Stoß
Ein zentraler unelastischer Stoß zwischen zwei Körpern ist dadurch gekennzeichnet, dass

  • keine elastischen Wechselwirkungen auftreten,
  • sich die Körper nach dem Stoß mit einer gemeinsamen Geschwindigkeit weiterbewegen und
  • ein Teil der mechanischen Energie in andere Energieformen umgewandelt wird.

Für einen solchen Stoß gilt der Impulserhaltungssatz und der allgemeine Energieerhaltungssatz, nicht aber der Energieerhaltungssatz der Mechanik.

Artikel lesen

Zustandsgleichung für das ideale Gas

Zwischen Druck p, Volumen V und absoluter Temperatur T des idealen Gases besteht folgender Zusammenhang:

p ⋅ V T = konstant oder p 1 ⋅ V 1 T 1 = p 2 ⋅ V 2 T 2

Für ein reales Gas ist die Zustandsgleichung anwendbar, wenn sich dieses näherungsweise wie das ideale Gas verhält. Das ist für fast alle Gase bei Zimmertemperatur der Fall.

Bezieht man die Gaskonstanten und andere Konstanten mit ein, so kann man die allgemeine Zustandsgleichung auch noch in weiteren Formen schreiben.

Artikel lesen

Anzahl und Abmessungen von Atomen

Feste, flüssige und gasförmige Stoffe bestehen aus Atomen bzw. Molekülen. Deren Existenz war lange umstritten und konnte erst sicher am Anfang des 20. Jahrhunderts nachgewiesen werden. Die Anzahl von Atomen je Mol beträgt 6,022 ⋅ 10 23 (AVOGADRO-Konstante). Damit sind in einem Gramm eines Stoffes ca. 10 22 Atome enthalten. Die Masse von Atomen liegt zwischen 10 − 27 kg und 10 -24 kg , der Radius von Atomen in der Größenordnung von 10 − 10   m und der Kernradius bei 10 15   m . Aus ihm ergibt sich die Dichte der Kernmaterie, die für alle Atomkerne annähernd gleich groß ist und einen Wert von 1,8 ⋅ 10 17   kg m 3 = 1,8 ⋅ 10 14   g cm 3 hat. Die Abmessungen von Atomen können in unterschiedlicher Weise bestimmt werden. Im Beitrag sind Möglichkeiten dafür angegeben.

Artikel lesen

Carnotscher Kreisprozess

Der Carnotsche Kreisprozess, bestehend aus je zwei isothermen und adiabatischen Zustandsänderungen, repräsentiert die „Takte“ einer ideal arbeitenden Wärmekraftmaschine. Dabei wird das Arbeitsmittel als ideales Gas betrachtet und die Prozessführung als reversible angenommen.

1. Takt: Durch Aufnahme von Wärme erfolgt eine isotherme Expansion. Es wird die Arbeit verrichtet.
2. Takt: Bei einer adiabatischen Expansion verringert sich die Temperatur. Hierbei wird von dem Gas arbeitet verrichtet, seine innere Energie verringert sich.
3. Takt: Für die isotherme Kompression muss Arbeit zugeführt werden. Die dabei entstehende Wärme wird an die Umgebung abgegeben.
4. Takt: Durch eine adiabatische Kompression wird die Temperatur erhöht und damit der Ausgangszustand wieder erreicht.

Nach dem 1. Hauptsatz der Thermodynamik ist die abgegebene mechanische Arbeit gleich der Änderung der Wärme in dem System. Die von den Zustandskurven eingeschlossene Fläche ist ein Maß für die abgegebene Arbeit.

Artikel lesen

Hypergeometrische Verteilung

Werden einer Urne mit genau N Kugeln (davon M weiße und N − M rote) genau n Kugeln „auf gut Glück“ entnommen und gibt die Zufallsgröße X die Anzahl der dabei herausgegriffenen weißen Kugeln an, so ist X hypergeometrisch verteilt, wenn die Kugeln ohne Zurücklegen entnommen werden, - im Unterschied zur Entnahme mit Zurücklegen.
Bevorzugtes Anwendungsgebiet der hypergeometrischen Verteilung ist die statistische Qualitätskontrolle.

Artikel lesen

Totale Wahrscheinlichkeit

Mitunter wird man mit dem Problem konfrontiert, die Wahrscheinlichkeit für ein Ereignis A zu berechnen, das im Zusammenhang mit n verschiedenen Ereignissen B i auftritt (in der Praxis können die B i zum Beispiel verschiedene Fälle oder Ursachen von A sein), wobei sich die Wahrscheinlichkeiten für die Ereignisse B i und insbesondere für das Eintreten von A unter der Bedingung, dass jeweils ein B i eingetreten ist, mitunter leichter angeben bzw. ermitteln lassen.

Gesucht ist also eine Aussage über eine „unbedingte“ Wahrscheinlichkeit, wenn Informationen über bedingte Wahrscheinlichkeiten vorliegen bzw. primär bestimmbar sind. Bei einer solchen Problemsituation wird man versuchen, den im Folgenden angeführten Satz der totalen Wahrscheinlichkeit anzuwenden.

Artikel lesen

Zählprinzipien

Bei der Lösung kombinatorischer Probleme sind zwei Zählprinzipien hilfreich – das für k-Tupel und das für Mengen.

Artikel lesen

Methoden zum Erstellen von Zufallszahlen

Zufallsziffern können genutzt werden zur Simulation von Zufallsexperimenten (Zufallsversuchen). Mithilfe der Randomfunktion von Computern und Taschenrechnern lassen sich (Pseudo-)Zufallszahlen erzeugen.

Artikel lesen

Definition und Zweck von Kennzahlen

Kennzahlen sind Maßstabwerte für den innerbetrieblichen, zwischenbetrieblichen oder volkswirtschaftlichen Vergleich. Sie setzen in einem leicht fassbaren Zahlenausdruck verschiedene Größen in ein sinnvolles Verhältnis zueinander. Kennzahlen dienen somit der übersichtlicheren Darstellung und einfacheren Interpretation betriebswirtschaftlicher und volkswirtschaftlicher Sachverhalte.

Seitennummerierung

  • Previous Page
  • Seite 5
  • Seite 6
  • Seite 7
  • Seite 8
  • Seite 9
  • Aktuelle Seite 10

242 Suchergebnisse

Fächer
  • Chemie (2)
  • Kunst (1)
  • Mathematik (99)
  • Physik (139)
  • Politik/Wirtschaft (1)
Klassen
  • 5. Klasse (21)
  • 6. Klasse (21)
  • 7. Klasse (21)
  • 8. Klasse (21)
  • 9. Klasse (21)
  • 10. Klasse (21)
  • Oberstufe/Abitur (242)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025