Direkt zum Inhalt

261 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Gleichförmige geradlinige Bewegungen

Eine gleichförmige geradlinige Bewegung eines Körpers liegt vor, wenn sich der Körper längs einer geraden Bahn ständig mit der gleichen Geschwindigkeit bewegt, wenn also gilt: v → = konstant .
Bei einer solchen Bewegung sind sowohl der Betrag als auch die Richtung der Geschwindigkeit konstant. Ein Beispiel für eine gleichförmige Bewegung ist ein Zug, der mit einer konstanten Geschwindigkeit eine gerade Strecke entlangfährt.

Artikel lesen

Gleichförmige Kreisbewegung

Eine gleichförmige Kreisbewegung liegt vor, wenn sich ein Körper immer mit dem gleichen Betrag der Geschwindigkeit auf einer kreisförmigen Bahn bewegt.
Die gleichförmige Kreisbewegung ist eine beschleunigte Bewegung, da sich ständig die Richtung der Geschwindigkeit ändert.

Artikel lesen

Gleichmäßig beschleunigte Drehbewegung

Eine gleichmäßig beschleunigte Drehbewegung liegt vor, wenn bei einem rotierenden starren Körper die Winkelbeschleunigung konstant und ungleich null ist. Beispiele dafür sind der Rotor eines gleichmäßig anlaufenden Elektromotors oder ein rotierendes Schwungrad, das gleichmäßig abgebremst wird. Für eine solche gleichmäßig beschleunigte Drehbewegung gelten die analogen Gesetze wie für eine gleichmäßig beschleunigte geradlinige Bewegung:
α =   konstant ω = α ⋅ t + ω 0 ϕ = 1 2 α ⋅ t 2 + ω 0 ⋅ t + ϕ 0

Artikel lesen

Gleichmäßig beschleunigte geradlinige Bewegung

Eine gleichmäßig beschleunigte geradlinige Bewegung liegt vor, wenn sich bei einem Körper die Geschwindigkeit in jeweils gleichen Zeiten in gleichem Maße ändert, wenn also der Betrag der Beschleunigung konstant ist.
Bei einer gleichmäßig beschleunigten geradlinigen Bewegung sind sowohl der Betrag der Beschleunigung als auch die Richtung der Beschleunigung immer gleich. Gleichmäßig beschleunigte Bewegungen können aber auch auf beliebigen anderen Bahnen erfolgen.

Artikel lesen

Gravitationsfeld der Erde

Die Erde besitzt wie jeder massebehaftete Körper ein Gravitationsfeld. Seine Besonderheiten für uns sind die, dass wir ständig in diesem Gravitationsfeld leben, seinen Wirkungen, z.B. unserer eigenen Gewichtskraft, ständig ausgesetzt sind und diese Wirkungen an vielen Stellen – bewusst oder unbewusst – beachten müssen. Auch in Wissenschaft und Technik spielen die Wirkungen des Gravitationsfeldes der Erde eine wichtige Rolle und müssen beachtet werden.

Artikel lesen

Gravitationsfelder

Unter einem Gravitationsfeld versteht man den besonderen Zustand des Raumes um einen massebehafteten Körper. In einem Gravitationsfeld werden auf andere Körper Gravitationskräfte ausgeübt.
Veranschaulichen kann man sich ein Gravitationsfeld ähnlich wie ein elektrisches oder ein magnetisches Feld durch Feldlinien oder Äquipotenziallinien. Die quantitative Beschreibung eines Gravitationsfeldes kann mithilfe von Feldgrößen (Gravitationsfeldstärke, Potenzial) erfolgen.

Artikel lesen

Gravitationskräfte und Bewegungen

Planeten, Monde und künstliche Satelliten bewegen sich unter dem Einfluss von Gravitationskräften auf näherungsweise kreisförmigen oder elliptischen Bahnen. Viele Kometen bewegen sich auf parabolischen Bahnen. Die Bahnform wird durch die wirkenden Gravitationskräfte und die Geschwindigkeit des Körpers bestimmt. Ein besonders einfacher Zusammenhang besteht bei kreisförmigen Bahnen zwischen der für eine gleichförmige Kreisbewegung erforderlichen konstanten Radialkraft und der wirkenden Gravitationskraft.

Artikel lesen

Gravitation und Gravitationsgesetz

Alle Körper ziehen sich aufgrund ihrer Massen gegenseitig an. So zieht z. B. die Erde den Mond an. Umgekehrt zieht auch der Mond die Erde an.
Die gegenseitige Anziehung von Körpern aufgrund ihrer Massen wird Massenanziehung oder Gravitation (gravis, lat.: schwer) genannt. Die dabei wirkenden Kräfte werden als Schwerkräfte oder als Gravitationskräfte bezeichnet.
Die Gravitationskraft zwischen zwei Körpern kann mit dem Gravitationsgesetz berechnet werden. Sie ist umso größer,

  • je größer die Massen der Körper sind und
  • je kleiner der Abstand ihrer Massenmittelpunkte voneinander ist.
Artikel lesen

Größen zur Beschreibung der Rotation

Die translatorische Bewegung eines Körpers kann mit den Größen Weg, Geschwindigkeit und Beschleunigung beschrieben werden. Analog dazu kann man die Bewegung eines rotierenden starren Körpers mit den Größen Drehwinkel, Winkelgeschwindigkeit und Winkelbeschleunigung beschreiben. Teilweise werden auch die Größen Umlaufzeit und Drehzahl mit genutzt. In der Dynamik kommen als weitere Größen das Drehmoment und das Trägheitsmoment hinzu.

Artikel lesen

Grundgesetz der Dynamik der Rotation

Bei der Translation gilt zwischen der Kraft F, der Masse m und der Beschleunigung a der grundlegende Zusammenhang F → = m ⋅ a → , das newtonsche Grundgesetz. Es wird auch als Grundgesetz der Dynamik der Translation bezeichnet. Für die Rotation starrer Körper gibt es ein analoges Gesetz, das Grundgesetz der Dynamik der Rotation. Es lautet:
Für den Zusammenhang zwischen dem an einem Körper angreifenden Drehmoment, seinem Trägheitsmoment und der Winkelbeschleunigung gilt die Gleichung:
M → = J ⋅ α → M Drehmoment J Trägheitsmoment α Winkelbeschleunigung

Artikel lesen

Hebel

Hebel sind kraftumformende Einrichtungen. Sie dienen häufig dazu, mit kleinen Kräften größere Kräfte hervorzurufen. Sie werden z. B. bei Brechstangen, Scheren, Schraubenschlüsseln, Flaschenöffnern, Waagen oder Wippen genutzt.
Mit Hebeln wird keine mechanische Arbeit gespart, sondern lediglich die notwendige Kraft zum Bewegen oder Heben eines Gegenstandes verringert, wobei sich der zurückzulegende Weg vergrößert.

Artikel lesen

Hydraulische Anlagen

Hydraulische und pneumatische Anlagen sind kraftumformende Einrichtungen, bei denen die gleichmäßige und allseitige Ausbreitung des Druckes in Flüssigkeiten bzw. in Gasen genutzt wird. Dabei werden durch Kolbendruck Kräfte übertragen sowie deren Betrag oder deren Richtung geändert.
Beispiele für solche Anlagen sind Hebebühnen, hydraulische Pressen, Wagenheber, Bremsen oder Türöffner bei Bussen und Schienenfahrzeugen.

Artikel lesen

Impulserhaltungssatz

Für den Impuls gilt wie für die Energie und den Drehimpuls ein Erhaltungssatz, der als Impulserhaltungssatz oder als Gesetz von der Erhaltung des Impulses bezeichnet wird. Er lautet:

In einem kräftemäßig abgeschlossenen System bleibt der Gesamtimpuls erhalten. Es gilt:
p → = ∑ i = 1 n p → i = ∑ i = 1 n m i ⋅ v → i = konstant
 

Artikel lesen

Mittelwerte

Unter dem Mittelwert zweier oder mehrerer Zahlen wird meist das arithmetische Mittel (bzw. der Durchschnitt) verstanden. Darüber hinaus sind allerdings mit dem geometrischen und dem harmonischen Mittel noch weitere Mittelbildungen möglich.

Artikel lesen

Keplersche Gesetze

Der Astronom JOHANNES KEPLER (1571-1630) entdeckte die grundlegenden Gesetze der Planetenbewegung. Die nach ihm benannten drei keplerschen Gesetze machen Aussagen über die Bahnform von Planeten und die Stellung der Sonne (1. keplersches Gesetz), die Bewegung von Planeten längs ihrer Bahn (2. keplersches Gesetz) sowie den Zusammenhang zwischen der Größe der Bahn und der Zeit für einen Umlauf um die Sonne (3. keplersches Gesetz).

Artikel lesen

Kosmische Geschwindigkeiten

Die Geschwindigkeiten, die ein Körper mindestens erreichen muss, um von einem Himmelskörper aus auf eine Bahn um diesem Himmelskörper zu gelangen oder um diesen Himmelskörper zu verlassen, bezeichnet man als kosmische Geschwindigkeiten. Unterschieden wird zwischen

  • der 1. kosmischen Geschwindigkeit (minimale Keisbahngeschwindigkeit),
  • der 2. kosmischen Geschwindigkeit (Fluchtgeschwindigkeit) und
  • der 3. kosmischen Geschwindigkeit.
Artikel lesen

Kräfte bei der Kreisbewegung

Welche Kräfte bei einer Kreisbewegung wirken, hängt davon ab, welches Bezugssystem man zugrunde legt. Von einem Inertialsystem (unbeschleunigtes, ruhendes Bezugssystem) aus beschrieben gilt:

Damit sich ein Körper auf einer Kreisbahn bewegt, muss auf ihn eine Kraft in Richtung Zentrum der Kreisbewegung wirken. Diese Kraft wird als Radialkraft bezeichnet. Sie bewirkt die Radialbeschleunigung und hat den Betrag:

F r = m ⋅ v 2 r = m ⋅ ω 2 ⋅ r = m ⋅ 4 π 2 ⋅ r T 2 = m ⋅ 4 π 2 ⋅ r ⋅ n 2

Zu dieser Radialkraft existiert nach dem Wechselwirkungsgesetz eine gleich große, entgegengesetzt gerichtete Gegenkraft, die keine besondere Bezeichnung trägt.
Von einem mitrotierenden (beschleunigten) Bezugssystem aus stellt sich der Sachverhalt anders dar: Auf einen Körper wirkt eine radial nach außen gerichtete Trägheitskraft, die als Zentrifugalkraft bezeichnet wird.

Artikel lesen

Kräfte und ihre Messung

Der Begriff Kraft wird im Alltag und in der Physik in vielfältiger Weise verwendet. Während der Alltagsbegriff mit unterschiedlichen Begriffsinhalten genutzt wird, ist die physikalische Größe Kraft eindeutig definiert:
Die Kraft gibt an, wie stark ein Körper bewegt oder verformt wird. Sie ist eine Wechselwirkungsgröße und eine vektorielle (gerichtete) Größe. Die Wirkung einer Kraft ist abhängig von ihrem Betrag, ihrer Richtung und ihrem Angriffspunkt.


Formelzeichen: F → Einheit: ein Newton (1 N) 1 N = 1 kg ⋅ m s 2
Man unterscheidet u.a. elektrische Kräfte, magnetische Kräfte, Reibungskräfte, Druckkräfte, Radialkräfte, Gewichtskräfte, Schubkräfte, Spannkräfte und Zugkräfte, Adhäsionskräfte und Kohäsionskräfte, innere Kräfte und äußere Kräfte voneinander.

Artikel lesen

Kräftezusammensetzung und Kräftezerlegung

Kräfte sind vektorielle (gerichtete) Größen. Wenn auf einen Körper zwei Kräfte wirken, so setzen sich diese Teilkräfte vektoriell zu einer resultierenden Kraft zusammen. Die resultierende Kraft, kurz auch Gesamtkraft oder Resultierende genannt, kann rechnerisch oder zeichnerisch ermittelt werden. Der Betrag der resultierenden Kraft hängt vom Betrag der beiden Teilkräfte und vom Winkel zwischen ihnen ab. Die Resultierende kann zeichnerisch oder rechnerisch ermittelt werden.
Eine Kraft kann auch in Teilkräfte oder Komponenten zerlegt werden. Voraussetzung dafür ist aber, dass die Richtung der Komponenten bekannt ist. Wie bei der Kräftezusammensetzung können auch bei der Kräftezerlegung die Teilkräfte zeichnerisch oder rechnerisch ermittelt werden.

Artikel lesen

Kraftstoß und Impuls

Der Kraftstoß kennzeichnet die zeitliche Wirkung einer Kraft auf einen Körper. Der Impuls dagegen ist eine Größe, die den Bewegungszustand eines Körpers unter Einbeziehung seiner Masse charakterisiert. Zwischen diesen beiden Größen besteht ein enger Zusammenhang. Jeder Kraftstoß ist mit einer Impulsänderung verbunden:
F → ⋅ Δ t = m ⋅ Δ v → oder I → = Δ p →
Während der Kraftstoß einen Vorgang kennzeichnet und damit eine vektorielle Prozessgröße ist, beschreibt der Impuls den Bewegungszustand eines Körpers und ist eine vektorielle Zustandsgröße.

Artikel lesen

Kurvenfahrten

Zum sicheren Durchfahren einer Kurve muss bei jedem Fahrzeug eine Kraft in Richtung Zentrum der Kreisbewegung wirken. Diese radial gerichtete Kraft, die Radialkraft, wird durch die Reibung zwischen Straße und Reifen aufgebracht.
Die aufzubringende Radialkraft ist umso größer,

  • je größer die Geschwindigkeit des Fahrzeuges ist,
  • je größer seine Masse ist,
  • je kleiner der Krümmungsradius der Kurve ist.

Welche Kräfte bei einer Kurvenfahrt tatsächlich wirken und wie schnell man eine Kurve durchfahren kann, hängt auch davon ab, ob die Kurve überhöht ist und ob man die Bewegung eines vierrädrigen oder eines zweirädrigen Fahrzeuges betrachtet.

Artikel lesen

Mechanische Leistung

Die mechanische Leistung gibt an, wie viel mechanische Arbeit in jeder Sekunde verrichtet wird.

Formelzeichen:
Einheit:
P
ein Watt (1 W)

Sie ist damit ein Maß dafür, wie schnell oder wie langsam mechanische Arbeit verrichtet wird, also ein Maß für die Arbeitsgeschwindigkeit. Sie kann berechnet werden mit den Gleichungen:

P = d W d t P = Δ W Δ t P = W t

Artikel lesen

Entdeckung des Luftdrucks

Die Geschichte der Entdeckung des Luftdrucks reicht von der Antike bis ins 17. Jahrhundert. Sie war eng mit der Suche nach dem luftleeren Raum, dem Vakuum, verbunden. Um 1630 wurde GALILEO GALILEI von Brunnenbauern auf ein Problem aufmerksam gemacht, der seinen Schüler EVANGELISTA TORRICELLI mit der Lösung beauftragte. TORRICELLI konnte erstmals den Luftdruck messen.
BLAISE PASCAL, der davon erfuhr, baute das erste Barometer. Weltberühmt wurde OTTO VON GUERICKE mit seinen ?Magdeburger Halbkugeln?, mit denen er 1654 die Wirkung des Luftdrucks eindrucksvoll nachwies. Der Luftdruck ist eine spezielle Art des Schweredruckes. Er kommt durch die Gewichtskraft der Luftsäule (Atmosphäre) zustande und ist deshalb am Erdboden am größten. Der normale Luftdruck bei 0 °C in Höhe des Meeresspiegels wird als Normdruck bezeichnet. Er hat einen Betrag von
1.013,25 hPa = 1.013,25 mbar = 101,325 kPa = 760 Torr.

Artikel lesen

Das newtonsches Grundgesetz (2. newtonsches Gesetz)

ISAAC NEWTON (1643-1727) entdeckte einen grundlegenden Zusammenhang zwischen Kraft, Masse und Beschleunigung, der als 2. newtonsches Gesetz, Grundgesetz der Mechanik oder newtonsches Grundgesetz bezeichnet wird und lautet:

F → = m ⋅ a → F auf einen Körper wirkende (resultierende) Kraft m Masse des Körpers a Beschleunigung des Körpers

Etwas allgemeiner kann man auch formulieren:

F → = Δ p → Δ t   oder in differenzieller Schreibweise F → = d p → d t   Dabei bedeuten: Δ p → , d p → Impulsänderung des Körpers Δ t , d t Zeitintervall

Artikel lesen

Potenzielle Energie und Potenzial

Potenzielle Energie und Potenzial sind wichtige Größen zur Charakterisierung eines Gravitationsfeldes.
Die potenzielle Energie eines Körpers ist von der Stärke des Gravitationsfeldes, von seiner Masse und davon abhängig, auf welches Bezugsniveau man die potenzieller Energie bezieht. In der Physik ist es üblich, die potenzielle Energie im Unendlichen null zu setzen.
Das Potenzial charakterisiert das Feld und ist damit eine Feldgröße. Unter dem Potenzial eines Punktes im Gravitationsfeld versteht man einen Zustand des Feldes, der ein Maß für die potenzielle Energie eines Körpers im betreffenden Punkt ist, wobei als Bezugspunkt (Nullniveau) ein Punkt im Unendlichen gewählt wird.

Seitennummerierung

  • Previous Page
  • Seite 1
  • Aktuelle Seite 2
  • Seite 3
  • Seite 4
  • Seite 5
  • Seite 6
  • Next Page

261 Suchergebnisse

Fächer
  • Chemie (2)
  • Kunst (1)
  • Mathematik (117)
  • Physik (140)
  • Politik/Wirtschaft (1)
Klassen
  • 5. Klasse (21)
  • 6. Klasse (21)
  • 7. Klasse (21)
  • 8. Klasse (21)
  • 9. Klasse (21)
  • 10. Klasse (21)
  • Oberstufe/Abitur (242)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2026