Direkt zum Inhalt

455 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Prozentwerte, Berechnen

Prozentwerte können mit der Formel W = G 100 ⋅ p berechnet werden (p: Prozentzahl; G: Grundwert).

Artikel lesen

Rabatte, Berechnen

Beim Verkauf von Waren und Dienstleistungen gewährt der Verkäufer oftmals einen Preisnachlass. Wenn bestimmte Preisnachlässe grundsätzlich bei Vorliegen gewisser Bedingungen gewährt werden, spricht man vom Rabatt.

Artikel lesen

Grundkonstruktionen

Zu den Grundkonstruktionen in der Geometrie werden im Allgemeinen die folgenden mit Zirkel und Lineal auszuführenden Konstruktionen gezählt:

  1. Halbieren einer Strecke (die Mittelsenkrechte errichten)
  2. Halbieren eines Winkels (die Winkelhalbierende konstruieren)
  3. Errichten der Senkrechten zu einer Geraden in einem Punkt der Geraden
  4. Fällen des Lotes von einem Punkt auf eine Gerade
Artikel lesen

David Hilbert

DAVID HILBERT (1862 bis 1943), deutscher Mathematiker
* 23. Januar 1862 Königsberg
† 14. Februar 1943 Göttingen

DAVID HILBERT zählt zu den bedeutendsten Mathematikern zu Beginn des 20. Jahrhunderts. Er wirkte fast 40 Jahre in Göttingen, dem damaligen mathematischen Zentrum Deutschlands.
HILBERT beschäftigte sich mit vielen Teilgebieten der Mathematik, u. a. mit der axiomatischen Grundlegung der Geometrie, Problemen der Zahlentheorie sowie mit Fragen der Relativitätstheorie. Auf dem Internationalen Mathematikerkongress 1900 in Paris formulierte er seine 23 berühmten mathematischen Probleme, denen sich die Mathematiker verstärkt zuwenden sollten. Einige dieser Probleme sind bis heute ungelöst.

Artikel lesen

Möndchen des Hippokrates

HIPPOKRATES VON CHIOS (griechischer Mathematiker, um 440 v. Chr.) war der berühmteste Geometer des 5. Jh. v. Chr. Von ihm stammt nach Überlieferung die erste zusammenfassende Darstellung geometrischen Wissens seiner Zeit unter dem Titel „Elemente“ nach dem Schema Voraussetzung, Satz und Beweis.
Eng verbunden ist der Name HIPPOKRATES auch mit zwei berühmten Problemen der Mathematik, der Quadratur des Kreises und der Verdopplung des Würfels.

Artikel lesen

Höhen im Dreieck

Die Lotstrecken von den Eckpunkten auf die jeweilige Gegenseite (bei stumpfwinkligen Dreiecken auf deren Verlängerungen) heißen Höhen und werden mit h bezeichnet. In einem Dreieck schneiden sich die drei Höhen in einem Punkt, dem Höhenschnittpunkt H.

Artikel lesen

Höhensatz

Die Satzgruppe des Pythagoras, zu der der Höhensatz gehört, zählt wegen ihrer großen Bedeutung für Berechnungen und Beweisführungen zu den berühmtesten der Planimetrie.

Artikel lesen

Kongruenzabbildungen

Eine Kongruenzabbildung (Bewegung) ist eine umkehrbar eindeutige Abbildung der einen Figur F 1 auf eine andere Figur F 2 .
Zwei Figuren F 1 und F 2 sind zueinander kongruent (deckungsgleich) genau dann, wenn sie die gleiche Form und Größe haben.
Schreibweise: F 1 ≅ F 2
Kongruente Figuren lassen sich durch eine Verschiebung, eine Spiegelung, eine Drehung oder eine Zusammensetzung von ihnen aufeinander abbilden.

Artikel lesen

Kongruenz von Dreiecken

Zwei Dreiecke sind zueinander kongruent, wenn es eine Bewegung gibt, die ein Dreieck auf das andere abbildet. Die beiden Dreiecke stimmen dann in allen sechs Bestimmungsstücken oder Maßen überein. Die Konstruktion eines Dreiecks ist möglich, wenn drei voneinander unabhängige Bestimmungsstücke gegeben sind. Daher wird auch bei der Betrachtung der Kongruenz von Dreiecken von drei Seiten oder Winkeln ausgegangen.

Artikel lesen

Beweisverfahren, Allgemeines

Betrachtet man die Mathematik als Gebäude, dann bilden Grundbegriffe und als wahr angenommene Aussagen (sogenannte Axiome) das Fundament. Der Aufbau des Gebäudes vollzieht sich im Wesentlichen dadurch, dass ausgehend von den Grundbegriffen weitere Begriffe gebildet werden sowie Zusammenhänge zwischen ihnen erkannt und in Aussagen formuliert werden. Als wahr erkannte Aussagen werden als Sätze in das Gebäude aufgenommen und bei dessen weiterer Vervollkommnung verwendet. Der Nachweis der Wahrheit einer Aussage, eines mathematischen Satzes, erfolgt durch einen Beweis.

Artikel lesen

Axiome, euklidische Geometrie

Im historischen Entstehungsprozess der Geometrie wurden relativ einfache, anschauliche Aussagen als Axiome gewählt, auf deren Grundlage sich die übrigen Sachverhalte beweisen ließen. Axiome sind also experimentellen Ursprungs, d. h. auch, dass sie gewisse einfache, anschauliche Eigenschaften des realen Raumes widerspiegeln. Die Axiome sind somit grundsätzliche Aussagen über die Grundbegriffe einer Geometrie, die dem betrachteten geometrischen System ohne Beweis hinzugefügt werden und auf deren Basis alle weiteren Aussagen des betrachteten Systems bewiesen werden.

Artikel lesen

Aussagen, Wahrheitswerte

Eine Aussage ist ein sinnvolles sprachliches Gebilde (bzw. die entsprechende Zeichenreihe), das entweder wahr oder falsch ist. Entscheidend ist, dass die Äußerung einen Wahrheitswert hat. Es ist nicht notwendig, ihn zu kennen.
Deshalb sind auch Äußerungen wie „Es gibt außerirdisches Leben“ Aussagen.

Artikel lesen

Axiomensystem, euklidische Geometrie

Das Axiomensystem bei EUKLID (und HILBERT) ist nicht willkürlich gewählt worden, sondern eine Abstraktion aus der jahrtausendelangen Erfahrungswelt des Menschen. Die dazugehörige Geometrie ist daher die Geometrie unseres Anschauungsraumes.
Bis zum Ende des 19. Jh. lag der gesamten Naturwissenschaft und Technik diese euklidische Geometrie zugrunde.

Artikel lesen

Bewegungen, Nacheinanderausführen

Die Nacheinanderausführung zweier Bewegungen ist wieder eine Bewegung.
Die Nacheinanderausführung zweier Verschiebungen ist wieder eine Verschiebung.
Die Nacheinanderausführung zweier Drehungen um das gleiche Drehzentrum ist wieder eine Drehung um dieses Drehzentrum.
Die Nacheinanderausführung zweier Spiegelungen an einander im Punkt S schneidenden Geraden g und h ist eine Drehung um S.
Die Nacheinanderausführung zweier Spiegelungen an zueinander parallelen Geraden g und h ist eine Verschiebung senkrecht zu den beiden Geraden.

Artikel lesen

Maßstäblich Darstellen

In zahlreichen Berufen gehört das maßstäbliche Verkleinern oder Vergrößern von Vorlagen mithilfe von Computern oder Pantografen zu den wichtigsten Tätigkeiten.

Artikel lesen

Drachenviereck

Ein Drachenviereck ist ein Viereck, in dem jeweils die beiden Seiten gleich lang sind, die einen Eckpunkt auf der Symmetrieachse gemeinsam haben. Die Diagonalen stehen in einem (gleichschenkligen) Drachenviereck senkrecht aufeinander. Eine von ihnen ist die Symmetrieachse.

Artikel lesen

Ungleichungen, Äquivalentes Umformen

Zwei Terme, zwischen denen eines der Zeichen <, >, ≤ , ≥ oder ≠ steht, bilden eine Ungleichung.

Äquivalenzumformungen von Ungleichungen

  • Das Addieren und das Subtrahieren derselben rationalen Zahl auf beiden Seiten der Ungleichung
  • Das Addieren und das Subtrahieren desselben Terms auf beiden Seiten der Ungleichung
  • Das Multiplizieren und das Dividieren mit einer positiven rationalen Zahl auf beiden Seiten der Ungleichung
  • Das Multiplizieren und das Dividieren mit einer negativen rationalen Zahl auf beiden Seiten der Ungleichung mit gleichzeitigem Umdrehen des Relationszeichens
    (Aus < wird >, aus ≤ wird ≥ und umgekehrt.)
Artikel lesen

Variablen, Wissenswertes und Historisches

Ein Wesenszug der Mathematik ist das Streben nach Verallgemeinerungen, ist das Erforschen von Gesetzmäßigkeiten, die nicht nur für einzelne Objekte, sondern für ganze Klassen von Objekten gelten. Dabei sind Variablen praktisch unentbehrlich.
Variablen werden meist durch Buchstaben dargestellt. Wenn man Variablen verwendet, ist es notwendig, immer den zugehörigen Variablengrundbereich zu berücksichtigen.

Artikel lesen

Verhältnisgleichungen

Viele Probleme, bei denen mit drei gegebenen Größen eine vierte berechnet wird, führen auf Verhältnisgleichungen (Proportionen).
Eine Gleichung der Form
a b = c d     (   a ,b ,c ,d ≠ 0   )
heißt Verhältnisgleichung oder Proportion.
Dabei wird der Quotient zweier Größen als Verhältnis bezeichnet. Verhältnisgleichungen haben eine große Bedeutung bei der Prozentrechnung, bei den Strahlensätzen und bei linearen Funktionen der Form y = mx.

Artikel lesen

Francois Vieta

FRANÇOIS VIÈTE (1540 bis 1603), französischer Mathematiker
* 1540 in Fontenay-le-Comte
† 13. Dezember 1603 in Paris

FRANÇOIS VIÈTE arbeitete auf den Gebieten der Trigonometrie und Gleichungslehre.
Unter anderem beschäftigte er sich mit der Berechnung der Kreiszahl π . Zu seinen Verdiensten gehört die Einführung von Buchstaben als allgemeine Zahlzeichen.

Artikel lesen

Wissenstest - Gleichungen und Ungleichungen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Gleichungen und Ungleichungen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Wissenstest - Lineare Gleichungen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Lineare Gleichungen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Wissenstest - Quadratische Gleichungen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Quadratische Gleichungen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Wurzelgleichungen

Eine Gleichung heißt Wurzelgleichung, wenn die Variable im Radikanden auftritt.
Wenn es sich beim Lösen von Gleichungen um Quadratwurzeln handelt, ist es oftmals möglich, diese Wurzeln durch einmaliges oder mehrfaches Quadrieren zu beseitigen. Allerdings muss das Ergebnis unbedingt überprüft werden, da das Quadrieren keine äquivalente Umformung ist.

Artikel lesen

Vietascher Wurzelsatz

Der vietasche Wurzelsatz beschreibt eine Beziehung zwischen den Koeffizienten der Normalform der quadratischen Gleichung x 2 + p x + q = 0 und den Lösungen x 1 und x 2 . Es gilt:
  x 1 + x 2 = −   p   u n d   x 1 ⋅ x 2 = q

Seitennummerierung

  • Previous Page
  • Seite 1
  • Seite 2
  • Aktuelle Seite 3
  • Seite 4
  • Seite 5
  • Seite 6
  • Next Page

455 Suchergebnisse

Fächer
  • Mathematik (455)
Klassen
  • 5. Klasse (455)
  • 6. Klasse (455)
  • 7. Klasse (455)
  • 8. Klasse (455)
  • 9. Klasse (455)
  • 10. Klasse (455)
  • Oberstufe/Abitur (429)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025