Direkt zum Inhalt

7690 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Terminologie der Differenzialgleichungen

Eine Differenzialgleichung ist eine Gleichung, in der Ableitungen unbekannter Funktionen auftreten. Handelt es sich bei den Funktionen um Funktionen einer Veränderlichen, so nennt man die Differenzialgleichungen „gewöhnliche Differenzialgleichungen“, bei mehreren Veränderlichen „partielle Differenzialgleichungen“.

Beispiele für gewöhnliche Differenzialgleichungen sind x   y ′ − y + c     x = 0 oder auch y ″ = c   y .

Die Theorie der Differenzialgleichungen untersucht, ob es eine oder mehrere Funktionen gibt, die (in die Differenzialgleichung eingesetzt) diese für jeden Wert der Variablen erfüllen und wie diese Funktion bzw. diese Funktionen gefunden werden können. Für einige Typen von Differenzialgleichungen lassen sich exakte Verfahren zum Auffinden von Lösungen angeben, sonst müssen Näherungsverfahren oder numerische Verfahren verwendet werden. Für numerische Verfahren werden auf modernen Rechenanlagen leistungsfähige Programme angeboten.

Durch Differenzialgleichungen lassen sich gewisse physikalische Gesetzmäßigkeiten gut darstellen, z.B. Schwingungs- und Strömungsvorgänge.
Im Folgenden werden einige wichtige Begriffe aus der Theorie der gewöhnlichen Differenzialgleichungen erläutert.

Artikel lesen

Lösen von linearen inhomogenen Differenzialgleichungen 1. Ordnung mittels Variation der Konstanten

Die Gleichung y ′ + f ( x ) y + g ( x ) = 0 ist die allgemeine Form einer linearen inhomogenen Differenzialgleichung 1. Ordnung.
Mit Variation der Konstanten wird eine Methode zum Integrieren dieser Gleichung bezeichnet. Die Vorgehensweise besteht darin, zuerst die zugehörige homogene Differenzialgleichung zu lösen, d.h., das Glied g(x) zu vernachlässigen. In diese Lösung geht ein freier Parameter c ein. Dieser wird dann als Funktion von x betrachtet und so bestimmt, dass die so modifizierte Lösung der linearen homogenen Differenzialgleichung der inhomogenen genügt.

Artikel lesen

Unbeschränktes und logistisches Wachstum (Differenzialgleichungen)

Eine Population bestehe aus N Individuen. Nach einer Zeit Δ t ist eine Änderung Δ N mit Δ N = N ( t + Δ t ) − N ( t ) des Populationsumfangs N zu verzeichnen. Kann die Population ohne Beschränkung wachsen, so ist die Änderung proportional zum Ausgangsumfang – je mehr Individuen vorhanden sind, desto mehr Nachwuchs stellt sich ein. Es gilt also Δ N ∼ N  oder  Δ N = k N (unbeschränktes Wachstum), wobei k als Wachstumsrate (bei unbeschränktem Wachstum) bezeichnet wird.
Ist das Wachstum durch eine Obergrenze G der Individuenzahl beschränkt, so wird sich bei noch kleiner Individuenzahl ein annähernd unbeschränktes Wachstum einstellen, mit wachsender Zahl N wird die Wachstumsrate jedoch kleiner, um schließlich bei N = G den Wert 0 anzunehmen. Eine Beschränkung kommt beispielsweise zustande, wenn die Population in einem isolierten Gebiet lebt, in dem sich höchstens G Individuen ernähren können.

Die modifizierte Wachstumsrate
k b = k ( 1 − N G )
weist das erwartete Verhalten auf.

Als Differenzengleichung ergibt sich
Δ N = k b ⋅ N = k ⋅ ( 1 − N G ) ⋅ N
(logistisches Wachstum).

Artikel lesen

Richtungsfeld einer Differenzialgleichung

Gewöhnliche Differenzialgleichungen beschreiben Kurvenscharen in der Ebene. Eine Differenzialgleichung 1. Ordnung ordnet jedem Punkt der xy-Ebene einen Wert zu (vorausgesetzt, dass für den Punkt ein Wert definiert ist), welcher der Richtung der Tangente der Integralkurve in diesem Punkt entspricht, ein sogenanntes Linienelement.
Die Gesamtheit der Linienelemente ist das durch die Differenzialgleichung beschriebene Richtungsfeld. Das Bestimmen der Lösung der Differenzialgleichung ist das Bestimmen der Kurven, die auf dieses Richtungsfeld „passen“.

Artikel lesen

Riesenschlangen

Die Familie der Riesenschlangen besteht aus ca. 60 Arten. Sie werden in zwei Gruppen eingeteilt, die Pythons und die Boas.
Die 20 Pythonarten leben in den tropischen Regionen der östlichen Halbkugel, während die Boas hauptsächlich auf dem amerikanischen Kontinent vorkommen.
Bekannte Vertreter der Riesenschlangen sind Abgott- oder Königsschlange, Große Anakonda, Tigerpython und Diamantenpython.

Artikel lesen

Mathematische Darstellung elektromagnetischer Schwingungen

Die Vorgänge in einem elektromagnetischen Schwingkreis können mit verschiedenen mathematischen Hilfsmitteln untersucht werden.
Als ein effektiver Weg zur Lösung der dabei betrachteten Differenzialgleichung erweist sich hierbei das Rechnen mit komplexen Zahlen. Veränderliche Ströme und Ladungen werden mit kleinen Buchstaben, also mit i und q bezeichnet. Im Unterschied dazu bezeichnen wir die imaginäre Einheit mit j, also − 1 = j .

Artikel lesen

Sophia Wassiljewna Kowalewskaja

* 15. Januar 1850 Moskau
† 10. Februar 1891 Stockholm

Der Russin SOPHIA WASSILJEWNA KOWALEWSKAJA gebührt das Verdienst, als erste Frau auf dem Gebiet der Mathematik promoviert zu haben und auf einen entsprechenden Lehrstuhl an einer Universität berufen worden zu sein.
Als Mathematikerin leistete sie wichtige Beiträge zur Problematik der Differenzialgleichungen. Des Weiteren beschäftigte sie sich mit Funktionentheorie sowie der Rotation starrer Körper.

Artikel lesen

Kugel und Feder - Bewegungsgleichung oder Energiesatz

Für die mathematische Beschreibung bzw. Berechnung von Bewegungsvorgängen gibt es oftmals verschiedene Vorgehensweisen. Die Berechnung kann mithilfe des newtonschen Grundgesetzes oder auch mithilfe des Energieerhaltungssatzes erfolgen. Ein Beispiel soll diese beiden Möglichkeiten demonstrieren.

Artikel lesen

Das Runge-Kutta-Verfahren

Soll eine explizite Differenzialgleichung f ′ ( x ) = G ( x ;   f ( x ) ) mit der Anfangsbedingung f ( x 0 ) = y 0 numerisch nach dem Polygonzugverfahren gelöst werden, so benutzt man die Differenzengleichung f ¯ ( x + h ) = f ¯ ( x ) + h ⋅ G ( x ;   f ¯ ( x ) ) .

Dabei ist y ¯ = f ¯ ( x ) eine Näherung für die eigentlich gesuchte Funktion y = f ( x ) .

Bei Übergang zur Darstellung der Differenzengleichung als iterative Bildungsvorschrift ergibt sich y ¯ i   + 1 = y ¯ i + h ⋅ G ( x i ;   y ¯ i ) bzw. y ¯ i   + 1 = y ¯ i + h ⋅ m i ( p o l y )  mit m i ( p o l y ) = G ( x i ;   y ¯ i ) .

Artikel lesen

Pierre-François Verhulst

* 28. Oktober 1804 Brüssel
† 15. Februar 1849 Brüssel

PIERRE-FRANÇOIS VERHULST gilt als Vorläufer der modernen Bevölkerungsstatistik.
Insbesondere entdeckte er die dem Bevölkerungswachstum zugrunde liegende Gleichung des sogenannten logistischen Wachstums (logistische Gleichung).

Artikel lesen

Wachstums- und Zerfallsprozesse

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Wachstums und Zerfallsprozesse".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Exponentieller Zerfall und exponentielles Wachstum

Viele Wachstums- und Zerfallsprozesse in Natur und Technik verlaufen exponentiell. Hierzu gehören u.a. das Wirtschaftswachstum, die Entwicklung von Tierpopulationen bzw. der radioaktive Zerfall. Idealisiert erfolgt eine Beschreibung dieser Prozesse meist durch die Differenzialgleichung d N d t = − λ ⋅ N .
Die Betrachtung realer Wachstumsprozesse in der Natur führt zum mathematischen Modell „Gebremstes Wachstum“. Berücksichtigt man, dass viele Prozesse nicht kontinuierlich, sondern quantenhaft verlaufen, lassen sie sich oftmals besser durch Rekursionsgleichungen beschreiben.

Artikel lesen

Darstellung komplexer Zahlen in der gaußschen Zahlenebene

Zur Veranschaulichung komplexer Zahlen wurde von CARL FRIEDRICH GAUSS eine Ebene gewählt, deren x-Achse als Einheit den reellen Wert 1 und deren y-Achse als Einheit den imaginären Wert i verwendet. Jeder komplexen Zahl a + b   i       ( m i t       a ,     b ∈ ℝ ) wird in dieser Ebene umkehrbar eindeutig ein Punkt zugeordnet.

Artikel lesen

Zur Geschichte der komplexen Zahlen

In der Geschichte der Mathematik führt der Weg zu den komplexen Zahlen über die Untersuchung von Quadratwurzeln mit negativem Radikanden.
Es ist ein Zeitraum von fast tausend Jahren, der erforderlich war, um Zahlen der Form a + −   b   ( a ,     b       r e e l l ,       b > 0 ) den Schleier des Unwirklichen zu nehmen und sie als Elemente einer die reellen Zahlen einschließenden Zahlenmenge zu verstehen.

Artikel lesen

Trigonometrische Darstellung komplexer Zahlen

Die Veranschaulichung komplexer Zahlen in der komplexen Zahlenebene kann entweder durch die Angabe von achsenparallelen Koordinaten erfolgen, wobei der Realteil auf der x-Achse, der Imaginärteil auf der y-Achse gemessen wird oder dadurch, dass Polarkoordinaten benutzt werden. In diesem Fall wird ein Punkt der Ebene durch den Abstand r des Punktes vom Koordinatenursprung und durch den Winkel ϕ zwischen der reellen Achse und dem Vektor vom Ursprung zu dem die Zahl darstellenden Punkt der Ebene angegeben.
Die komplexe Zahl z = a + b     i ist dann durch die folgende Form beschrieben:
  z = r cos ϕ + i ⋅ r sin ϕ = r ( cos ϕ + i sin ϕ )

Artikel lesen

Ringelwürmer

Ringelwürmer (Annelida) sind weltweit verbreitet und gehören zu den Wirbellosen. Diese Gruppe umfasst laut Bundesamt für Naturschutz in Deutschland etwa 500 Arten und weltweit über 15 000 Arten. Untergruppen sind Vielborster, Wenigborster und Egel.
Ringelwürmer sind lang gestreckte, wirbellose Tiere, deren Körper zylinderförmig oder abgeplattet ist sowie außen und innen Segmente aufweist.

Ein Vertreter der Ringelwürmer ist der Regenwurm. Der Körper des Regenwurms, ein Ringelwurm, ist in zahlreiche Ringe (Segmente) gegliedert. An jedem Körperring besitzt er vier Paar Borsten. Beim Regenwurm stimmen äußere und innere Körpergliederung weitgehend überein. Der Regenwurm besitzt einen Hautmuskelschlauch, ein Strickleiternervensystem, einen durchgehenden Darm und ein geschlossenes Blutgefäßsystem. Er bewegt sich kriechend vorwärts, ist ein Hautatmer und Feuchtlufttier.
Der Regenwurm ist ein zwittriges Tier. Zur Fortpflanzung muss er sich paaren. Durch lichtempfindliche Zellen der Haut, durch das Strickleiternervensystem und durch den Hautmuskelschlauch kann er auf Licht und Berührung reagieren.

Artikel lesen

Schlussregeln

In der Mathematik ist es häufig erforderlich, neue Aussagen aus schon vorhandenen Aussagen zu gewinnen oder auch zu zeigen, dass sich eine bestimmte Aussage zwingend aus bereits als wahr erkannten Aussagen ergibt. Hierbei werden sogenannte Schlussregeln angewandt. Man versteht darunter logische Strukturen, die unabhängig von ihrem Inhalt bei jeder Belegung mit den Wahrheitswerten „wahr“ oder „falsch“ stets zu einer wahren Aussagenverbindung führen. Solche Strukturen oder Aussagenverbindungen nennt man logische Identitäten oder auch Tautologien.
Der Beweis für die Richtigkeit der Schlussregeln könnte jeweils mit den Wahrheitswertetafeln für die verschiedenen logischen Operationen geführt werden.

Artikel lesen

Der Satz von Moivre

Der Satz von MOIVRE – benannt nach ABRAHAM DE MOIVRE (1667 bis 1754) – sagt aus, wie die Multiplikation bzw. Division und das Potenzieren von in trigonometrischer Form vorliegenden komplexen Zahlen auf einfache Operationen für die Winkel und die Beträge der komplexen Zahlen zurückgeführt werden können.

Artikel lesen

Basen und Dimension von Unterräumen

Sind a 1 → ,       a 2 → ,       ...,       a m → Vektoren eines Vektorraumes V, so ist die Menge aller Linearkombinationen dieser Vektoren bezüglich der Addition und der Vervielfachung in V wieder ein Vektorraum, d.h. ein Unterraum von V. Die Menge { a 1 → ,     a 2 → ,     ...,     a m → } wird ein Erzeugendensystem des Unterraumes U genannt.
Von besonderem Interesse ist ein minimales Erzeugendensystem für U, d.h. ein System mit kleinstmöglicher Zahl m, welches dann Basis von U genannt wird.

Für die folgenden Betrachtungen werden die Begriffe der linearen Unabhängigkeit bzw. der linearen Abhängigkeit von Vektoren benötigt.

Artikel lesen

Beweise unter Verwendung von Vektoren

Sätze der ebenen Geometrie lassen sich mithilfe von Vektoren mitunter sehr knapp und übersichtlich beweisen. Auf der Grundlage entsprechender Figuren, in denen die relevanten Stücke vektoriell gekennzeichnet werden, formuliert man Voraussetzungen und Behauptung jeweils mittels Vektoren und versucht, durch logische Schlüsse unter Verwendung der Rechengesetze für Vektoren den Beweis zu führen.
Bereits Addition und Vervielfachung von Vektoren können dabei sehr hilfreich sein, die Hinzunahme multiplikativer Verknüpfungen und deren Eigenschaften erschließen weitere Anwendungsmöglichkeiten. Die folgenden Beispiele illustrieren diese Vorgehensweise.

Artikel lesen

René Descartes

* 31. März 1596 La Haye bei Tours
† 11. Februar 1650 Stockholm

Der französische Philosoph RENÉ DESCARTES gilt als einer der Wegbereiter der Aufklärung in Europa. Auf mathematischem Gebiet arbeitete er vor allem zur analytischen Geometrie. So geht die heute gebräuchliche Form des (kartesischen) Koordinatensystems auf ihn zurück. Auch setzte er sich dafür ein, mathematische (deduktive) Methoden in der Philosophie anzuwenden.

Artikel lesen

Flächeninhalt eines Dreiecks

Aus der Elementargeometrie ist die folgende Formel für den Flächeninhalt des Dreiecks bekannt:
  A = g ⋅ h 2

Für die analytische Geometrie sollen nun eine Formel in Koordinatendarstellung und eine in Vektordarstellung entwickelt werden.

Artikel lesen

Pierre de Fermat

* 1607 Beaumont-de-Lomagne
† 12. Januar 1665 Castres

PIERRE DE FERMAT begründete neben RENÉ DESCARTES die analytische Geometrie. Des Weiteren arbeitete er auf dem Gebiet der Zahlentheorie und war an der Ausarbeitung von Grundlagen der Wahrscheinlichkeitsrechnung beteiligt. FERMAT führte einen regen wissenschaftlichen Briefwechsel mit Mathematikern seiner Zeit wie DESCARTES und BLAISE PASCAL. Eine besondere Berühmtheit erlangte sein Name im Zusammenhang mit der fermatschen Vermutung, deren Beweis viele Generationen von Mathematikern beschäftigte und erst im Jahre 1994 gelang.

Artikel lesen

Kollinearität von Punkten (und Vektoren)

Punkte bezeichnet man als kollinear, wenn sie auf ein und derselben Geraden liegen. Zwei (verschiedene) Punkte sind stets kollinear, da sie eindeutig eine Gerade bestimmen.
Vektoren, deren Repräsentanten auf einer Geraden bzw. auf parallelen Geraden liegen, werden als kollineare Vektoren bezeichnet.

Die Lage eines Punktes P zu einer Geraden g (Lagebeziehung von Punkt und Gerade) kann auf verschiedene Weise untersucht werden. Im Folgenden wird dies – getrennt für die Ebene und den Raum – an Beispielen demonstriert.

Artikel lesen

Komplanare und nichtkomplanare Punkte (und Vektoren)

Ausgehend vom Begriff der Komplanarität für Punkte ergeben sich für die Prüfung der Komplanarität von mehr als drei Punkten mehrere Möglichkeiten, von denen zwei an einem Beispiel demonstriert werden sollen.
Diese Überlegungen führen zum Begriff der Komplanarität von Vektoren.

Seitennummerierung

  • Previous Page
  • Seite 207
  • Seite 208
  • Aktuelle Seite 209
  • Seite 210
  • Seite 211
  • Seite 212
  • Next Page

7690 Suchergebnisse

Fächer
  • Biologie (993)
  • Chemie (1168)
  • Deutsch (965)
  • Englisch (649)
  • Geografie (348)
  • Geschichte (408)
  • Kunst (332)
  • Mathematik (884)
  • Musik (311)
  • Physik (1278)
  • Politik/Wirtschaft (354)
Klassen
  • 5. Klasse (4621)
  • 6. Klasse (4621)
  • 7. Klasse (4621)
  • 8. Klasse (4621)
  • 9. Klasse (4621)
  • 10. Klasse (4621)
  • Oberstufe/Abitur (4820)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025