Direkt zum Inhalt

129 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Permutationen

Unter einer Permutation versteht man eine Anordnung, bei der alle n Elemente verwendet (d. h. auf n Plätze verteilt) werden. Man unterscheidet Permutationen ohne und mit Wiederholung (der Elemente).

Artikel lesen

Pseudozufallszahlen

Die Simulation zufälliger Vorgänge aus der Praxis ist oft sehr mühsam und zeitaufwendig. Das gilt besonders auch für das Erzeugen von Zufallszahlen und das Arbeiten mit diesen Zahlen (ggf. unter Verwendung entsprechender Tabellen).
Heute ist es möglich, von Computern erzeugte Zufallszahlen, sogenannte Pseudozufallszahlen, zu nutzen. Grundlage für deren Erzeugung ist ein Algorithmus, der Ziffernfolgen liefert, die annähernd dieselben Eigenschaften haben wie echte Zufallszahlen.

Artikel lesen

Umkehrfunktion

Eine Funktion heißt umkehrbar eindeutige (eineindeutige) Funktion, wenn nicht nur jedem Argument eindeutig ein Funktionswert zugeordnet ist, sondern auch umgekehrt zu jedem Funktionswert genau ein Argument gehört.

Artikel lesen

Winkelfunktionen am Kreis

Jedem spitzen Winkel in einem rechtwinkligen Dreieck sind umkehrbar eindeutig Seitenverhältnisse zugeordnet, die man als Sinus, Kosinus, Tangens bzw. Kotangens des betreffenden Winkels bezeichnet. Es handelt sich hierbei also um Funktionen mit der Menge der Winkel 0 < x < π 2 als Definitionsbereich und der Menge der Seitenverhältnisse als Wertebereich.
Damit eine Zahl-Zahl-Beziehung entsteht, verwenden wir das Bogenmaß der Winkel.

Artikel lesen

Regelmäßige Vielecke

Alle regelmäßigen Vielecke (n-Ecke) besitzen gleich lange Seiten und gleich große Innenwinkel und sind damit konvex.
Die Winkelsumme im n-Eck beträgt (n – 2) · 180°.
Im regelmäßigen n-Eck ist diese Winkelsumme gleichmäßig auf alle n Innenwinkel des n-Ecks verteilt.

Artikel lesen

Pyramide

Ein Körper heißt Pyramide, wenn er von einem Dreieck, Viereck, Fünfeck usw. als Grundfläche und von Dreiecken als Seitenflächen begrenzt wird, die einen Punkt S gemeinsam haben. Der Punkt S heißt Spitze der Pyramide. Der Abstand der Spitze der Pyramide von der Grundfläche heißt Höhe der Pyramide. Der Fußpunkt der Höhe ist der Fußpunkt des Lotes von der Spitze in die Grundfläche. Die Kanten der Grundfläche nennt man Grundkanten, die Kanten der Seitenfläche heißen Seitenkanten.

Artikel lesen

Pyramidenstumpf

Wird eine Pyramide durch eine zur Grundfläche der Pyramide parallele Ebene geschnitten, so entstehen ein Pyramidenstumpf und die zugehörige Ergänzungspyramide.

Artikel lesen

Prisma

Ein Körper heißt gerades Prisma, wenn er von zwei zueinander kongruenten und parallelen n-Ecken und von n Rechtecken begrenzt wird. Die n-Ecke heißen Grundfläche und Deckfläche des Prismas. Der Abstand zwischen Grund- und Deckfläche ist die Höhe des Prismas.

Artikel lesen

Platonische Körper

Unter den Vielflächnern (Polyedern) spielen diejenigen, die nur von regelmäßigen untereinander kongruenten Vielecken (n-Ecken) begrenzt sind, eine besondere Rolle.
Diese regelmäßigen (regulären) Polyeder werden nach dem griechischen Philosophen PLATON (427 bis 347 v. Chr.) als platonische Körper bzw. als kosmische Körper bezeichnet.

Artikel lesen

Kreiskegel

Werden alle Punkte eines Kreises mit einem Punkt S außerhalb der Kreisebene verbunden, so schließen diese Strecken gemeinsam mit dem Kreis einen Körper ein, der Kreiskegel genannt wird. Er hat einen Kreis als ebene Grundfläche und eine gekrümmte Mantelfläche.

Artikel lesen

Kreiszylinder

Einen Körper mit zwei zueinander kongruenten und parallelen Kreisen als Grund- und Deckfläche nennt man Kreiszylinder. Liegen die Mittelpunkte der Kreisflächen des Zylinders senkrecht übereinander, so handelt es sich um einen geraden Kreiszylinder. Man kann sich einen geraden Kreiszylinder auch durch Rotation eines Rechtecks um eine seiner Seiten entstanden vorstellen.

Artikel lesen

Kugel

Die Kugel ist die Menge aller Punkte des Raums, die von einem festen Punkt M, dem Mittelpunkt der Kugel, den gleichen Abstand r haben. Der Abstand heißt Radius der Kugel.

Artikel lesen

Kugelteile

Wird eine Kugel durch eine Ebene oder mehrere Ebenen geschnitten, so entstehen verschiedene Schnittfiguren.
Beim Schnitt einer Kugel durch eine Ebene entstehen zwei Kugelabschnitte (Kugelsegmente). Verläuft diese Schnittebene genau durch den Kugelmittelpunkt, entstehen zwei Halbkugeln.

Artikel lesen

Winkelhalbierende im Dreieck

Die Winkelhalbierenden halbieren die drei Innenwinkel des Dreiecks. Die drei Winkelhalbierenden schneiden einander in genau einem Punkt. Dieser Punkt ist Mittelpunkt des Kreises, der die drei Dreiecksseiten von innen berührt. Man nennt deshalb diesen Kreis den Inkreis des Dreiecks.

Artikel lesen

Quader

Ein Quader ist ein gerades Prisma mit paarweise zueinander kongruenten Rechtecksflächen. Ein Quader hat sechs Begrenzungsflächen, zwölf Kanten und acht Ecken.

Artikel lesen

Kegelstumpf

Wird ein gerader Kreiskegel von einer parallel zu Grundfläche verlaufenden Ebene geschnitten, so entsteht ein gerader Kegelstumpf. Die parallelen Flächen A G und A D sind zueinander ähnliche Kreise.

Artikel lesen

Kombinationen

Zu den typischen kombinatorischen Fragestellungen gehören solche, bei denen Zusammenstellungen von k aus n Elementen betrachtet werden, also eine Auswahl vorgenommen wird.
Werden dabei alle möglichen Reihenfolgen der Elemente betrachtet und unterschieden, so spricht man von Variationen, wird die Reihenfolge nicht berücksichtigt von Kombinationen.
(Der Begriff Kombination wird mitunter auch als Oberbegriff für Variation und Kombination verwendet.)

Artikel lesen

Glockenförmige Häufigkeitsverteilung

Grafische Darstellungen von Häufigkeitsverteilungen sind oft symmetrisch und lassen für den Fall, dass die Anzahl der Beobachtungsergebnisse nicht zu gering ist, eine annähernd glockenförmige Gestalt erkennen. Lage und Form der „Glocke“ werden durch den Mittelwert x ¯ bzw. die Standardabweichung s bestimmt.

Artikel lesen

Würfel, allgemein

Ein Würfel besitzt sechs zueinander kongruente Quadrate als Begrenzungsflächen, die paarweise zueinander parallel liegen. Zur Berechnung des Oberflächeninhalts und des Volumens reicht daher zum Beispiel die Angabe der Länge der Körperkante des Würfels.

Artikel lesen

Binomialkoeffizienten

Beim rechnerischen Lösen kombinatorischer Probleme bzw. beim Berechnen von Wahrscheinlichkeiten werden als Binomialkoeffizienten bezeichnete Terme verwendet. Es sind die Koeffizienten, die beim Entwickeln der n-ten Potenz eines Binoms (a + b) auftreten. Sie können aus dem sogenannten pascalschen Zahlendreieck gewonnen werden. Nachteil dabei ist, dass bei diesem Vorgehen rekursiv verfahren wird, d. h., zur Ermittlung der Koeffizienten von ( a + b ) n müssen die von ( a + b ) n − 1 bekannt sein.
Hier wird deshalb eine explizite Definition der Binomialkoeffizienten gegeben, einige Rechenregeln werden plausibel gemacht, und der binomische Satz wird allgemein formuliert.

Artikel lesen

Binomialverteilung

Die Verteilung der Anzahl k der Erfolge in einer Bernoulli-Kette der Länge n und der Erfolgswahrscheinlichkeit p wird Binomialverteilung mit den Parametern n und p genannt. Es gilt:

  P ( X = k ) = ( n k ) ⋅ p k ⋅ ( 1 − p ) n − k   ( k = 0 ;     1     ...     n )

Tabellen der Binomialverteilung für bestimmte Parameterwerte von n und p sind in vielen Tafelwerken enthalten.
Binomialverteilungen lassen sich mithilfe des sogenannten Galton-Bretts veranschaulichen.

Artikel lesen

Materialverflechtungen

Materialflüsse innerhalb einer ökonomischen Einheit drücken technologische und ökonomische Beziehungen zwischen den einzelnen Produktionsebenen aus.
Bei der Planung und Bilanzierung derartiger Wechselbeziehungen wird ein mathematisches Modell mit Matrizen und Vektoren gebildet. Dies ermöglicht es, in komprimierter Form die quantitativen Werte zu erfassen und zu bewerten.

Artikel lesen

Inversion von Matrizen

Um die Inverse einer Matrix zu bestimmen, gibt es zwei prinzipielle Verfahren (Möglichkeiten).
Beim GAUSS-JORDAN-Verfahren wird mithilfe elementarer Matrizenumformungen die Matrix gegen die Einheitsmatrix ausgetauscht wird.
Beim Austauschverfahren werden nach einem angegebenen Algorithmus die Zeile r und die Spalte s der Matrix vertauscht.

Artikel lesen

Multiplikation einer Matrix mit einem Vektor

Für die Produktbildung A ⋅ c → (Multiplikation einer Matrix mit einem Vektor) muss vorausgesetzt werden, dass die Anzahl der Spalten in der Matrix A mit der Anzahl der Koordinaten des Vektors c → übereinstimmt.
Die Koordinaten des neuen Spaltenvektors, der durch die Multiplikation A ⋅ c → entsteht, erhält man jeweils als Summe der Koordinatenprodukte eines Zeilenvektors von A und des Spaltenvektors c → .

Artikel lesen

Exponentieller Zerfall und exponentielles Wachstum

Viele Wachstums- und Zerfallsprozesse in Natur und Technik verlaufen exponentiell. Hierzu gehören u.a. das Wirtschaftswachstum, die Entwicklung von Tierpopulationen bzw. der radioaktive Zerfall. Idealisiert erfolgt eine Beschreibung dieser Prozesse meist durch die Differenzialgleichung d N d t = − λ ⋅ N .
Die Betrachtung realer Wachstumsprozesse in der Natur führt zum mathematischen Modell „Gebremstes Wachstum“. Berücksichtigt man, dass viele Prozesse nicht kontinuierlich, sondern quantenhaft verlaufen, lassen sie sich oftmals besser durch Rekursionsgleichungen beschreiben.

Seitennummerierung

  • Previous Page
  • Seite 1
  • Seite 2
  • Seite 3
  • Aktuelle Seite 4
  • Seite 5
  • Seite 6
  • Next Page

129 Suchergebnisse

Fächer
  • Mathematik (129)
Klassen
  • 5. Klasse (112)
  • 6. Klasse (112)
  • 7. Klasse (112)
  • 8. Klasse (112)
  • 9. Klasse (112)
  • 10. Klasse (112)
  • Oberstufe/Abitur (17)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2026