Direkt zum Inhalt

24 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Volumeneinheiten

Die Basiseinheit für das Volumen (den Rauminhalt) ist der Kubikmeter ( m 3 ).
Für größere oder kleinere Volumen (Rauminhalte) verwendet man Einheiten, die durch Vervielfachen mit Potenzen von 1000 = 10 3 aus dem Kubikmeter abgeleitet sind, wie z. B. Kubikdezimeter
( d m 3 ), Kubikzentimeter ( c m 3 ) oder Kubikmillimeter ( m m 3 ) .

Artikel lesen

Ellipsoid

Ein Ellipsoid ist ein Rotationskörper, der durch die Rotation einer Ellipse um eine ihrer Hauptsachsen entsteht.

Während bei einer Kugel alle drei räumlichen Ausdehnungen gleich sind, sind diese bei einem Ellipsoid verschieden.

Artikel lesen

Kegelstumpf

Wird ein gerader Kreiskegel von einer parallel zu Grundfläche verlaufenden Ebene geschnitten, so entsteht ein gerader Kegelstumpf. Die parallelen Flächen A G und A D sind zueinander ähnliche Kreise.

Artikel lesen

Geometrische Körper

Ein geometrischer Körper ist die Menge aller Punkte, Geraden und Ebenen des dreidimensionalen Raumes, die innerhalb eines vollständig abgeschlossenen Teils dieses Raumes liegen.
Die Summe der Flächeninhalte der Begrenzungsflächen bildet den Oberflächeninhalt, der vollständig umschlossene Raum das Volumen des Körpers.

Artikel lesen

Zusammengesetzte Körper

Viele Körper in der Realität (z. B. Gebäude, Werkstücke) lassen sich als Summe oder Differenz geometrischer Körper wie Prismen, Zylinder, Pyramiden und Halbkugeln usw. darstellen. Das Volumen bzw. der Oberflächeninhalt zusammengesetzter Körper berechnet sich dann entsprechend als Summe oder Differenz der Volumina bzw. Oberflächeninhalte der geometrischen Körper.

Artikel lesen

Prinzip des Cavalieri

FRANCESCO BONAVENTURA CAVALIERI, ein Schüler GALILEIs, veröffentlichte 1629 das auf seinen Überlegungen beruhende Prinzip des Volumenvergleichs zweier Körper.

Artikel lesen

Kugelvolumen, Herleitung

Zur Herleitung der Formel für das Volumen einer Kugel kann nach einer Idee von GALILEI ein Körper geschaffen werden, der in gleichen Höhen den gleichen Querschnitt wie eine Halbkugel hat. Ein solcher Körper entsteht, wenn man aus einem Kreiszylinder mit dem Grundflächenradius r und der Höhe r einen Kreiskegel mit gleicher Grundfläche und gleicher Höhe herausschneidet.

Artikel lesen

Kugelvolumen nach Archimedes

Der berühmte griechische Mathematiker ARCHIMEDES konnte durch eine geschickte physikalische Überlegung als erster die Formel für das Volumen einer Kugel herleiten, indem er die Volumina dreier Körper verglich.

Artikel lesen

Prisma

Ein Körper heißt gerades Prisma, wenn er von zwei zueinander kongruenten und parallelen n-Ecken und von n Rechtecken begrenzt wird. Die n-Ecke heißen Grundfläche und Deckfläche des Prismas. Der Abstand zwischen Grund- und Deckfläche ist die Höhe des Prismas.

Artikel lesen

Pyramide

Ein Körper heißt Pyramide, wenn er von einem Dreieck, Viereck, Fünfeck usw. als Grundfläche und von Dreiecken als Seitenflächen begrenzt wird, die einen Punkt S gemeinsam haben. Der Punkt S heißt Spitze der Pyramide. Der Abstand der Spitze der Pyramide von der Grundfläche heißt Höhe der Pyramide. Der Fußpunkt der Höhe ist der Fußpunkt des Lotes von der Spitze in die Grundfläche. Die Kanten der Grundfläche nennt man Grundkanten, die Kanten der Seitenfläche heißen Seitenkanten.

Artikel lesen

Pyramidenstumpf

Wird eine Pyramide durch eine zur Grundfläche der Pyramide parallele Ebene geschnitten, so entstehen ein Pyramidenstumpf und die zugehörige Ergänzungspyramide.

Artikel lesen

Quader

Ein Quader ist ein gerades Prisma mit paarweise zueinander kongruenten Rechtecksflächen. Ein Quader hat sechs Begrenzungsflächen, zwölf Kanten und acht Ecken.

Artikel lesen

Wissenstest - Pyramide, Kegel, Kugel, Polyeder

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Pyramide / Kegel / Kugel / Polyeder".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Wissenstest - Würfel, Quader, Prisma, Zylinder

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Quader / Prisma / Zylinder".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Würfel, allgemein

Ein Würfel besitzt sechs zueinander kongruente Quadrate als Begrenzungsflächen, die paarweise zueinander parallel liegen. Zur Berechnung des Oberflächeninhalts und des Volumens reicht daher zum Beispiel die Angabe der Länge der Körperkante des Würfels.

Artikel lesen

Kreiskegel

Werden alle Punkte eines Kreises mit einem Punkt S außerhalb der Kreisebene verbunden, so schließen diese Strecken gemeinsam mit dem Kreis einen Körper ein, der Kreiskegel genannt wird. Er hat einen Kreis als ebene Grundfläche und eine gekrümmte Mantelfläche.

Artikel lesen

Kreiszylinder

Einen Körper mit zwei zueinander kongruenten und parallelen Kreisen als Grund- und Deckfläche nennt man Kreiszylinder. Liegen die Mittelpunkte der Kreisflächen des Zylinders senkrecht übereinander, so handelt es sich um einen geraden Kreiszylinder. Man kann sich einen geraden Kreiszylinder auch durch Rotation eines Rechtecks um eine seiner Seiten entstanden vorstellen.

Artikel lesen

Kugel

Die Kugel ist die Menge aller Punkte des Raums, die von einem festen Punkt M, dem Mittelpunkt der Kugel, den gleichen Abstand r haben. Der Abstand heißt Radius der Kugel.

Artikel lesen

Bonaventura Cavalieri

* 1598 Mailand
† 30. November 1647 Bologna

BONAVENTURA FRANCESCO CAVALIERI lehrte in Bologna und arbeitete vor allem auf dem Gebiet der Geometrie. Seine Berechnungen zu Flächeninhalten und Volumina, insbesondere das Prinzip der Indivisiblen, bereiteten die Entwicklung von Methoden der Infinitesimalrechnung vor.

Artikel lesen

Paul Guldin

* 12. Juni 1577 Mels (St. Gallen)
† 3. November 1643 Graz

PAUL GULDIN war Professor für Mathematik, u.a. in Wien und Graz. In einem seiner Werke gibt er Formeln zur Berechnung der Oberfläche und des Volumens von Rotationskörpern an. Diese sogenannten guldinschen Regeln sollen allerdings schon dem griechischen Mathematiker PAPPOS von Alexandria bekannt gewesen sein.

Artikel lesen

Evangelista Torricelli

* 15. Oktober 1608 Faenza bei Florenz
† 25. Oktober 1647 Florenz

EVANGELISTA TORRICELLI benutzte bei der Inhaltsbestimmung von Flächen und Körpern infinitesimale Methoden, wodurch die weitere Entwicklung der Integralrechnung maßgeblich beeinflusst wurde.
In der Physik erlangte TORRICELLI vor allem durch seine Untersuchungen zum Luftdruck und auf dem Gebiet der Hydraulik Bedeutung. Die Maßeinheit Torr ist nach ihm benannt worden.

Artikel lesen

Komplanare und nichtkomplanare Punkte (und Vektoren)

Ausgehend vom Begriff der Komplanarität für Punkte ergeben sich für die Prüfung der Komplanarität von mehr als drei Punkten mehrere Möglichkeiten, von denen zwei an einem Beispiel demonstriert werden sollen.
Diese Überlegungen führen zum Begriff der Komplanarität von Vektoren.

Artikel lesen

Geschichte der Analysis

Die Analysis (oder auch Infinitesimalrechnung) beschäftigt sich im Wesentlichen mit der Differenzial- und Integralrechnung.
Ausgangspunkt für die Integralrechnung war das schon in der Antike betrachtete Problem der Bestimmung des Inhalts von Flächen und Körpern, wie etwa von Rotationskörpern.
Die Differenzialrechnung hat ihre Wurzeln dagegen im Tangentenproblem, mit dem sich Mathematiker im 17. Jahrhundert intensiver beschäftigten.
Im 18. Jahrhundert wurde der Zusammenhang zwischen dem Differenzieren und Integrieren erkannt und im Hauptsatz der Differenzial- und Integralrechnung formuliert. Hierzu trugen wesentlich ISAAC NEWTON und GOTTFRIED WILHELM LEIBNIZ bei.

Artikel lesen

Galileo Galilei

* 15. Februar 1564 Pisa
† 8. Januar 1642 Arcetri (bei Florenz)

GALILEO GALILEI wirkte als Universitätsprofessor in Pisa, Padua und Florenz. Wegen seines Eintretens für die heliozentrische Lehre wurde er vom römischen Inquisitionsgericht verfolgt.
Zu den mathematischen Leistungen GALILEIS zählen die Konstruktion des Proportionalzirkels sowie die Herleitung der Formel für das Volumen einer Kugel.

24 Suchergebnisse

Fächer
  • Mathematik (24)
Klassen
  • 5. Klasse (18)
  • 6. Klasse (18)
  • 7. Klasse (18)
  • 8. Klasse (18)
  • 9. Klasse (18)
  • 10. Klasse (18)
  • Oberstufe/Abitur (6)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025