Direkt zum Inhalt

455 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Quadratische Funktionen, Nullstellen

Wir betrachten zunächst quadratische Funktionen der Form y = f ( x ) = a x 2 + b x + c .
Man erhält y = f ( x ) = x 2 + b x + c bzw. durch Umbenennung
y = f ( x ) = x 2 + p x + q ,     p ,   q ∈ ℝ .
Um den Zusammenhang zwischen den reellen Zahlen p, q und den Nullstellen der jeweiligen quadratischen Funktionen bzw. den Schnittpunkten ihrer Graphen mit der x-Achse zu erkennen, ist es zweckmäßig, eine Fallunterscheidung durchzuführen.

Artikel lesen

Untersuchen quadratischer Funktionen

Tabellenkalkulationsprogramme können sehr hilfreich sein, wenn Wertetabellen von Funktionen zu ermitteln oder Funktionsgraphen zu zeichnen sind. Zur grafischen Darstellung einer Funktion muss zuerst eine Wertetabelle aufgestellt werden. Mit den Zahlenpaaren der Tabelle wird dann ein Diagramm erstellt.

Artikel lesen

Antinomien

Man spricht von einer Antinomie (einem echtem Paradoxon), wenn eine Aussage auf einen Widerspruch zurückgeführt wird, der nicht lösbar ist.
Neben dem Lügner-Paradoxon von EPIMENIDES gehört das Barbier-Paradoxon des britischen Mathematiker BERTRAND RUSSELL (1872 bis 1970) zu den bekannten Antinomien.
Das Barbier-Paradoxon gehört zur Gruppe der russellschen Antinomien.

Artikel lesen

Trigonometrie, Geschichte

Die Bezeichnung Trigonometrie kommt aus dem Griechischen und setzt sich aus den griechischen Wörtern für „drei“, „Winkel“ und „messen“ zusammen.
Die Anfänge trigonometrischer Kenntnisse sind nicht bekannt. Belegt ist, dass im Altertum Babylonier, Chinesen und Ägypter Zusammenhänge zwischen Winkeln und Längen kannten und benutzt haben.
Die heute übliche Formelsprache ist aber erst im 18. Jahrhundert von dem Schweizer Mathematiker LEONHARD EULER geschaffen worden.

Artikel lesen

Summen und Differenzen trigonometrischer Funktionen


Für die Summen bzw. Differenzen trigonometrischer Funktionen können Produktdarstellungen angegeben werden, die für das praktische Rechnen mitunter bequemer zu handhaben sind.

Artikel lesen

Umkehrfunktion

Eine Funktion heißt umkehrbar eindeutige (eineindeutige) Funktion, wenn nicht nur jedem Argument eindeutig ein Funktionswert zugeordnet ist, sondern auch umgekehrt zu jedem Funktionswert genau ein Argument gehört.

Artikel lesen

Winkelfunktionen am Kreis

Jedem spitzen Winkel in einem rechtwinkligen Dreieck sind umkehrbar eindeutig Seitenverhältnisse zugeordnet, die man als Sinus, Kosinus, Tangens bzw. Kotangens des betreffenden Winkels bezeichnet. Es handelt sich hierbei also um Funktionen mit der Menge der Winkel 0 < x < π 2 als Definitionsbereich und der Menge der Seitenverhältnisse als Wertebereich.
Damit eine Zahl-Zahl-Beziehung entsteht, verwenden wir das Bogenmaß der Winkel.

Artikel lesen

Winkelfunktionen am rechtwinkligen Dreieck

Bei allen zueinander ähnlichen rechtwinkligen Dreiecken sind die Quotienten aus den Längen von je zwei einander entsprechenden Seiten gleich.
Für die nebenstehend bzw. in Bild 1 dargestellten Dreiecke A 1   B 1   C 1 ,       A 1   B 2   C 2       und       A 1   B 3   C 3 , die einander ähnlich sind, gilt nach den Ähnlichkeitssätzen:
  B 1 C 1 ¯ A 1 B 1 ¯ = B 2 C 2 ¯ A 1 B 2 ¯ = B 3 C 3 ¯ A 1 B 3 ¯ A 1 C 1 ¯ A 1 B 1 ¯ = A 1 C 2 ¯ A 1 B 2 ¯ = A 1 C 3 ¯ A 1 B 3 ¯ B 1 C 1 ¯ A 1 C 1 ¯ = B 2 C 2 ¯ A 1 C 2 ¯ = B 3 C 3 ¯ A 1 C 3 ¯
Solche für zueinander ähnliche rechtwinklige Dreiecke übereinstimmenden Quotienten (Verhältnisse) werden mit Bezug auf einen der beiden nicht rechten Winkel als der Sinus, der Kosinus, der Tangens bzw. der Kotangens dieses Winkels bezeichnet.

Artikel lesen

Raute

Ein Viereck mit vier gleich langen Seiten heißt Raute (Rhombus). Neben den Eigenschaften eines Parallelogramms (Parallelität der gegenüberliegenden Seiten) besitzt die Raute folgende Merkmale:
1. Die Seiten sind gleich lang.
2. Die Diagonalen stehen senkrecht aufeinander.
3. Die Diagonalen halbieren die Innenwinkel.

Artikel lesen

Rechteck


Ein Parallelogramm mit einem rechten Winkel ist ein Rechteck.
Für das Rechteck gilt demzufolge:

  • Die gegenüberliegenden Seiten sind gleich lang und zueinander parallel.
  • Benachbarte Seiten sind rechtwinklig zueinander.
  • Alle vier Innenwinkel sind gleich groß. Sie betragen 90°.
  • Die Diagonalen sind gleich lang und halbieren einander.
Artikel lesen

Christoph Scheiner

CHRISTOPH SCHEINER (1575 bis 1650), Jesuitenpater, Mathematiker und Astronom
* 25. Juli 1575 Markt Wald bei Mindelheim
† 18. Juli 1650 Neiße

CHRISTOPH SCHEINER war von 1610 bis 1616 Professor für Mathematik an der Universität in Ingolstadt, er war zudem der berühmteste der dort wirkenden Astronomen. Der gelehrte Jesuit führte astronomische Beobachtungen durch und entwickelte zahlreiche astronomische Geräte. Insbesondere konstruierte er den Pantographen, ein Gerät zum maßstäblichen Übertragen von Vorlagen.

Artikel lesen

Goldener Schnitt

Ein besonderes Teilungsverhältnis einer Strecke heißt Goldener Schnitt bzw. stetige Teilung bei folgender Eigenschaft:
Trägt man den kürzeren auf den längeren Abschnitt ab, so wird dieser im gleichen Verhältnis geteilt wie die Ausgangsstrecke. Dies kann man nun beliebig fortsetzen, wobei das Teilungsverhältnis konstant, eben stetig, erhalten bleibt.

Artikel lesen

Goldener Schnitt in der Kunst

In der Antike herrschte die Auffassung, dass der menschliche Körper und seine Teile eine gewisse symmetrische Harmonie, die sich auch mathematisch beschreiben ließe, besitzen müsse um vollkommen zu sein. Sein goldener Punkt sei der Nabel, der darüber liegende Teil sollte dem Minor und der darunter liegende dem Major der Körpergröße entsprechen.

Artikel lesen

Goldener Schnitt in der Natur

Geometrische Formen in der Natur sind vielfältig. So findet man häufig die Form des Pentagramms.
Das Längenwachstum der Pflanzen scheint sich an den Proportionen des Goldenen Schnittes zu orientieren, denn die Strecken zwischen den einzelnen Wachstumsknoten stehen in diesem Verhältnis.

Artikel lesen

Sehnensatz

Schneiden in einem Kreis zwei Sehnen einander, so ist das Produkt der beiden Abschnitte auf der einen Sehne gleich dem Produkt der Abschnitte auf der anderen Sehne.

Artikel lesen

Sehnen- und Sinustafeln

HIPPARCHOS VON NIKAIA (etwa 190 bis 125 v. Chr.), einer der bedeutendsten Astronomen der Antike, gilt als Begründer der sphärischen Trigonometrie. Seine Bücher sind nicht erhalten geblieben, er besaß aber wahrscheinlich Sehnentafeln. In der Antike wurden Tafeln, die Zusammenhänge zwischen Winkeln und Längen erfassten, auf den Kreis bezogen (deshalb Sehnentafeln), erst im 16. Jahrhundert erfolgte der Übergang zum rechtwinkligen Dreieck.

Artikel lesen

Durchschnittsmenge


Die Durchschnittsmenge (Schnittmenge) von A und B ( A ∩ B ) ist die Menge aller Elemente, die in A und zugleich in B enthalten sind.

A ∩ B = { x :       x ∈ A ∧ x ∈ B } (gesprochen: A geschnitten B)
Das Zeichen „ ∧ “ steht für das Bindewort „und“.

Artikel lesen

Tangentenvieleck

Ein Vieleck, das einen Inkreis besitzen, heißt Tangentenvieleck.
Ein solches Vieleck nennt man auch umbeschriebenes Vieleck. Alle Dreiecke und alle regelmäßigen Vielecke besitzen einen Inkreis und sind Tangentenvielecke.

Artikel lesen

Tangram

Das Tangram ist ein Legespiel, das vor über 2 000 Jahren in China entstanden sein soll. Es besteht aus insgesamt sieben Teilen, weshalb es auch „Siebenschlau“ genannt wird.
Aufgabe ist es, mit einzelnen oder allen Puzzle-Teilen bestimmte Fantasiefiguren zu legen oder gegebene Figuren mit den Teilen auszulegen.

Artikel lesen

Thales

THALES VON MILET (etwa 624 bis 548 v. Chr.), ionischer Philosoph und Mathematiker (Geometer)
* um 624 v. Chr.
† um 548 v. Chr.

THALES VON MILET beschäftigte sich neben philosophischen Fragen vor allem mit geometrischen Problemen. Er bewies u. a., dass jeder Peripheriewinkel (Umfangswinkel) über dem Halbkreis ein rechter ist (Satz des Thales).

Artikel lesen

Euklid

EUKLID VON ALEXANDRIA (etwa 365 bis etwa 300 v. Chr.), griechisch-hellenistischer Mathematiker

EUKLID fasste in den „Elementen“ wesentliche Teile des mathematischen Wissens seiner Zeit zusammen und gründete sie auf Axiome bzw. Postulate. Eine besondere Rolle spielte in der Geschichte der Mathematik EUKLIDs fünftes Postulat, das sogenannte Parallelenaxiom. Der Versuch, dieses Axiom zu beweisen, führte zu einer Gabelung in die euklidische Geometrie einerseits und nichteuklidische Geometrien andererseits.
Mit dem Namen EUKLIDs verbunden sind weiterhin die Begriffe euklidischer Algorithmus, euklidischer Beweis sowie der Satz von EUKLID.
Bekannt sind ferner Arbeiten EUKLIDs zur geometrischen Optik.

Artikel lesen

Satz des Thales

Satz des Thales:
Jeder Umfangswinkel über einem Halbkreis (bzw. über dem Durchmesser eines Kreises) ist ein rechter Winkel.

Artikel lesen

Trapez

Ein Viereck mit einem Paar paralleler Seiten heißt Trapez.
Die parallelen Seiten sind die Grundseiten, die beiden anderen Seiten die Schenkel des Trapezes.
Der Abstand der Grundseiten ist die Höhe h des Trapezes.
Die Verbindungsstrecke der Mitten der Schenkel heißt Mittellinie m.
Sind in einem Trapez die Schenkel gleich lang, so heißt es gleichschenklig. Hat das Trapez einen rechten Innenwinkel, so heißt es rechtwinkliges Trapez.

Artikel lesen

Verschiebung

Eine Verschiebung A B → (Parallelverschiebung, Translation) ist eine eineindeutige Abbildung der Ebene auf sich selbst, bei der für das Bild P' jedes Punktes P gilt:
P P ' ∥ A B und A P ∥ B P '
A B → wird als Verschiebungspfeil bezeichnet. P P → ' hat stets die gleiche Länge und Richtung sowie den gleichen Richtungssinn wie A B → .

Artikel lesen

Regelmäßige Vielecke

Alle regelmäßigen Vielecke (n-Ecke) besitzen gleich lange Seiten und gleich große Innenwinkel und sind damit konvex.
Die Winkelsumme im n-Eck beträgt (n – 2) · 180°.
Im regelmäßigen n-Eck ist diese Winkelsumme gleichmäßig auf alle n Innenwinkel des n-Ecks verteilt.

Seitennummerierung

  • Previous Page
  • Seite 10
  • Seite 11
  • Aktuelle Seite 12
  • Seite 13
  • Seite 14
  • Seite 15
  • Next Page

455 Suchergebnisse

Fächer
  • Mathematik (455)
Klassen
  • 5. Klasse (455)
  • 6. Klasse (455)
  • 7. Klasse (455)
  • 8. Klasse (455)
  • 9. Klasse (455)
  • 10. Klasse (455)
  • Oberstufe/Abitur (429)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025