Direkt zum Inhalt

79 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Keplersche Gesetze

Der Astronom JOHANNES KEPLER (1571-1630) entdeckte die grundlegenden Gesetze der Planetenbewegung. Die nach ihm benannten drei keplerschen Gesetze machen Aussagen über die Bahnform von Planeten und die Stellung der Sonne (1. keplersches Gesetz), die Bewegung von Planeten längs ihrer Bahn (2. keplersches Gesetz) sowie den Zusammenhang zwischen der Größe der Bahn und der Zeit für einen Umlauf um die Sonne (3. keplersches Gesetz).

Artikel lesen

Kosmische Geschwindigkeiten

Die Geschwindigkeiten, die ein Körper mindestens erreichen muss, um von einem Himmelskörper aus auf eine Bahn um diesem Himmelskörper zu gelangen oder um diesen Himmelskörper zu verlassen, bezeichnet man als kosmische Geschwindigkeiten. Unterschieden wird zwischen

  • der 1. kosmischen Geschwindigkeit (minimale Keisbahngeschwindigkeit),
  • der 2. kosmischen Geschwindigkeit (Fluchtgeschwindigkeit) und
  • der 3. kosmischen Geschwindigkeit.
Artikel lesen

Kräfte bei der Kreisbewegung

Welche Kräfte bei einer Kreisbewegung wirken, hängt davon ab, welches Bezugssystem man zugrunde legt. Von einem Inertialsystem (unbeschleunigtes, ruhendes Bezugssystem) aus beschrieben gilt:

Damit sich ein Körper auf einer Kreisbahn bewegt, muss auf ihn eine Kraft in Richtung Zentrum der Kreisbewegung wirken. Diese Kraft wird als Radialkraft bezeichnet. Sie bewirkt die Radialbeschleunigung und hat den Betrag:

F r = m ⋅ v 2 r = m ⋅ ω 2 ⋅ r = m ⋅ 4 π 2 ⋅ r T 2 = m ⋅ 4 π 2 ⋅ r ⋅ n 2

Zu dieser Radialkraft existiert nach dem Wechselwirkungsgesetz eine gleich große, entgegengesetzt gerichtete Gegenkraft, die keine besondere Bezeichnung trägt.
Von einem mitrotierenden (beschleunigten) Bezugssystem aus stellt sich der Sachverhalt anders dar: Auf einen Körper wirkt eine radial nach außen gerichtete Trägheitskraft, die als Zentrifugalkraft bezeichnet wird.

Artikel lesen

Kräfte und ihre Messung

Der Begriff Kraft wird im Alltag und in der Physik in vielfältiger Weise verwendet. Während der Alltagsbegriff mit unterschiedlichen Begriffsinhalten genutzt wird, ist die physikalische Größe Kraft eindeutig definiert:
Die Kraft gibt an, wie stark ein Körper bewegt oder verformt wird. Sie ist eine Wechselwirkungsgröße und eine vektorielle (gerichtete) Größe. Die Wirkung einer Kraft ist abhängig von ihrem Betrag, ihrer Richtung und ihrem Angriffspunkt.


Formelzeichen: F → Einheit: ein Newton (1 N) 1 N = 1 kg ⋅ m s 2
Man unterscheidet u.a. elektrische Kräfte, magnetische Kräfte, Reibungskräfte, Druckkräfte, Radialkräfte, Gewichtskräfte, Schubkräfte, Spannkräfte und Zugkräfte, Adhäsionskräfte und Kohäsionskräfte, innere Kräfte und äußere Kräfte voneinander.

Artikel lesen

Masse von Körpern

Man unterscheidet grundsätzlich zwischen der trägen und der schweren Masse. Die träge Masse ist ein Maß dafür, wie sehr sich ein Körper einer Bewegungsänderung widersetzt, die schwere Masse gibt an, wie schwer oder leicht ein Körper ist. Experimentell kann die Äquivalenz der schweren und trägen Masse nachgewiesen werden.
In der klassischen Mechanik ist die Masse eine Erhaltungsgröße und somit unabhängig vom Ort und Bewegungszustand des Körpers. In der relativistischen Mechanik ist sie jedoch eine Funktion der Geschwindigkeit und nimmt mit dieser zu. Man spricht von der relativistischen Massezunahme.
Zur experimentellen Bestimmung der Masse benutzt man Waagen, die es in den unterschiedlichsten Bauarten gibt und die auf verschiedenen physikalischen Gesetzten beruhen.

Artikel lesen

Resonanz

Schwingende Körper (Schwinger, Oszillatoren) können durch Energiezufuhr von außen zu erzwungenen Schwingungen angeregt werden. Ist die Erregerfrequenz gleich der Eigenfrequenz des Schwingers, so erreicht die Amplitude der Schwingung ein Maximum. Das wird als Resonanz bezeichnet. Die Resonanzbedingung lautet:

f E = f 0 f E Erregerfrequenz f 0 Eigenfrequenz des Schwingers

Artikel lesen

Schräger Wurf

Unter einem schrägen oder schiefen Wurf versteht man die Überlagerung (Superposition) einer gleichförmigen Bewegung mit bestimmter Anfangsgeschwindigkeit (Abwurfgeschwindigkeit) schräg nach oben und des freien Falls.
Die beiden Teilbewegungen ergeben eine resultierende (zusammengesetzte) Bewegung. Für diese resultierende Bewegung können Wege und Geschwindigkeiten rechnerisch oder zeichnerisch ermittelt werden. Dabei ist der vektorielle Charakter von Weg und Geschwindigkeit zu beachten.
Als Bahnkurve ergibt sich eine typische Wurfparabel.

Artikel lesen

Schweredruck in Flüssigkeiten

Den Druck in einer Flüssigkeit, der infolge der Gewichtskraft einer darüber liegenden Flüssigkeitssäule entsteht, nennt man Schweredruck.

Formelzeichen:p
Einheit:ein Pascal (1 Pa)

Er kann berechnet werden mit der Gleichung p = ρ ⋅ g ⋅ h .
Der Schweredruck ist ein spezieller Druck. Es gelten für ihn aber alle Aussagen, die für den Druck allgemein zutreffen.

Artikel lesen

Überlagerung von Schwingungen

Schwingungen können sich wie andere Bewegungen überlagern. Das Ergebnis dieser Überlagerung hängt von den gegebenen Bedingungen ab.
Überlagern sich Schwingungen gleicher Schwingungsrichtung und gleicher Frequenz, so entstehen wieder harmonische Schwingungen, deren Amplitude von der Phasenlage der Einzelschwingungen abhängt. Bei geringem Unterschied der Frequenzen der Einzelschwingungen entsteht eine Schwebung.
Bei Einzelschwingungen deutlich unterschiedlicher Frequenz entsteht als Resultierende eine Schwingung, die nicht harmonisch ist.
Bei der Überlagerung von Schwingungen, deren Schwingungsrichtung senkrecht zueinander ist, bilden sich als resultierende Schwingungen Gebilde, die als LISSAJOUS-Figuren bezeichnet werden.

Artikel lesen

Massenspektrografie

Viele Elemente bestehen aus Isotopengemischen. Auch bei Kernreaktionen entstehen unterschiedliche Isotope. Sie unterscheiden sich in ihren Massen zum Teil nur geringfügig. Die Methode, Teilchen nach ihrer unterschiedlichen Masse voneinander zu trennen und damit zu identifizieren, bezeichnet man als Massenspektrografie. Die entsprechenden Geräte werden als Massenspektrografen oder Massenspektrometer bezeichnet. Den ersten Massenspektrografen entwickelte der britische Physiker und Chemiker FRANCIS WILLIAM ASTON (1877-1945) im Jahr 1919.

Artikel lesen

Hans Christian Oersted

* 14.08.1777 in Rudkoebing
† 09.03.1851 in Kopenhagen

Er war ein dänischer Physiker und Chemiker und war als Professor für Physik in Kopenhagen tätig. Im Jahre 1820 entdeckte er die magnetische Wirkung elektrischer Ströme und damit den Zusammenhang zwischen Elektrizität und Magnetismus.

Artikel lesen

Der elektromagnetische Schwingkreis

Als Schwingkreis bezeichnet man im einfachsten Fall eine Anordnung eines Kondensators und einer Spule in einem geschlossenen Stromkreis. Durch Anlegen einer äußeren Wechselspannung kann ein Schwingkreis zu elektromagnetischen Eigenschwingungen angeregt werden. Bei diesen Schwingungen wandeln sich beständig elektrische Feldenergie im Kondensator und magnetische Feldenergie an der Spule ineinander um.

Artikel lesen

Sensoren

Sensoren sind Bauelemente oder Schaltungen, die die Aufgabe haben, ein nichtelektrisches Eingangssignal in ein elektrisches Ausgangssignal umzuwandeln. Die Umwandlung von nichtelektrischen Größen (z.B. Temperatur, Beleuchtungsstärke, Kraft, magnetische Feldstärke) in Spannungen bzw. Stromstärke wird genutzt, um physikalische Größen zu messen, Anlagen zu steuern oder Räume und Anlagen zu überwachen. Je nachdem, welche nichtelektrischen physikalischen Größen die Sensoren beeinflussen, unterscheidet man z.B. zwischen Temperatursensoren, optischen Sensoren, Kraftsensoren oder Magnetfeldsensoren.

Artikel lesen

Transformatoren

Transformatoren oder Umformer werden verwendet, um elektrische Energie eines Wechselstromes von einem Primärstromkreis auf einen Sekundärstromkreis zu übertragen. Bei dieser Übertragung kann man die Werte für die Spannungen und die Stromstärken verändern. Das Funktionsprinzip von Transformatoren beruht auf der elektromagnetischen Induktion, wobei die eine Spule als felderzeugende Spule und die andere als Induktionsspule dient.
Für die praktische Anwendung wesentlich ist die Anpassung eines Transformators an die jeweilige Belastung. In der Technik gibt es auch eine Reihe von speziellen Transformatoren, zu denen beispielsweise Netzgeräte oder Zündspulen gehören.

Artikel lesen

Graphen und Eigenschaften von Winkelfunktionen

Graphen von Winkelfunktionen kann man auf die bekannte Weise unter Verwendung einer Wertetabelle zeichnen. Es ist allerdings auch möglich, ausgehend von der Definition dieser Funktionen am Einheitskreis die zu einem Winkel als Abszisse eines Graphenpunktes gehörende Ordinate sofort aus der Zeichnung zu entnehmen. Aus der Konstruktion der Funktionsgraphen lassen sich einige wichtige Eigenschaften der entsprechenden Winkelfunktionen schlussfolgern.

Artikel lesen

Geschwindigkeitsverteilung von Teilchen

Gegenstand der kinetischen Gastheorie ist die Betrachtung thermodynamischer Prozesse auf der Grundlage von Teilchengrößen, wie der Teilchenanzahl, ihrer räumlichen Verteilung und ihrer Energie. Von besonderer Bedeutung ist die Geschwindigkeitsverteilung der Teilchen eines Gases, da die Geschwindigkeit eng mit der kinetischen Energie, dem Druck und auch mit der Temperatur verknüpft ist. Untersuchungen zeigen, dass zwischen der mittleren Geschwindigkeit, der wahrscheinlichsten Geschwindigkeit und der mittleren quadratischen Geschwindigkeit der Teilchen unterschieden werden muss.

Artikel lesen

Isobare Zustandsänderungen

Bei einer isobaren Zustandsänderung eines Gases bleibt der Druck konstant. Die Zustandskurve im p-V-Diagramm ist eine Parallele zur V-Achse. Ein solcher Prozess kann realisiert werden, wenn dem Gas eine Wärme Q zugeführt wird. Damit dabei der Druck konstant bleibt, muss von dem Gas gleichzeitig Volumenarbeit verrichtet werden. Die zugeführte Wärme Q erzeugt bei einer isobaren Zustandsänderung eine Änderung der inneren Energie und des Volumens. Nach dem 1. Hauptsatz der Thermodynamik ergibt sich die Bilanz:

Q = Δ U − W

Bei Verwendung des Modells des idealen Gases erhöht die zugeführte Wärme Q die innere Energie U des Gases und verrichtet Volumenarbeit.

Artikel lesen

Isochore Zustandsänderungen

Bei einer isochoren Zustandsänderung eines Gases bleibt das Volumen konstant. Die Zustandskurve im p-V-Diagramm verläuft vertikal, parallel zur p-Achse. Ein solcher Prozess wird realisiert, wenn Gas in einem geschlossenen Behälter erwärmt wird. Die zugeführte Wärme führt zu einer Erhöhung der Temperatur und damit zu einer Änderung der inneren Energie U. Da das Volumen konstant bleibt, wird von dem Gas keine Arbeit verrichtet. Nach dem 1. Hauptsatz der Thermodynamik ist damit die zugeführte Wärme gleich der Änderung der inneren Energie des Gases:

Q = Δ U

Bei Verwendung des Modells ideales Gas erhöht die zugeführte Wärme die inneren Energie des Gases bei einem isochoren Prozess um:

Δ U = 3 2 N ⋅ k ⋅ Δ T N Anzahl der Teilchen k BOLTZMANN-Konstante Δ T Temperaturdifferenz

Daraus lässt sich die molare Wärmekapazität eines idealen Gases bei konstantem Volumen berechnen.

Artikel lesen

Isotherme Zustandsänderungen

Nach dem 1. Hauptsatz der Thermodynamik kann eine isotherme Zustandsänderung, also eine Zustandsänderung bei konstanter Temperatur, durch folgende Prozesse realisiert werden:

  • Dem Gas wird eine Wärme Q zugeführt, es dehnt sich aus und verrichtet Volumenarbeit (isotherme Expansion).
  • An dem Gas wird die äußere Arbeit W verrichtet, das Volumen wird kleiner und die dabei entstehende Wärme wird abgegeben (isotherme Kompression).

Die bei einer isothermen Expansion vom Gas verrichtete Arbeit (Volumenarbeit) entspricht der Fläche unterhalb der Isobare im p-V- Diagramm. Sie kann durch Auszählen der Fläche oder durch Integration berechnet werden. Bei Verwendung des Modells ideales Gas beträgt die Volumenarbeit bei isothermer Expansion:

W = − N ⋅ k ⋅ T ⋅ ln V 2 V 1

Diese Arbeit ist gleich der dem Gas zugeführten Wärme, die dieses benötigt, um seine innere Energie bei der Expansion konstant zu halten.

Artikel lesen

Stanislaw Marcin Ulam

* 03. April 1909 Lemberg (heute: Lwow, Ukraine)
† 13. Mai 1984 Santa Fe (New, Mexico, USA)

STANISLAW ULAM trug maßgeblich zur Entwicklung der ersten Wasserstoffbombe durch die USA bei. Lange Jahre arbeitete er eng mit JOHN VON NEUMANN zusammen.
ULAM gilt als Begründer der sogenannten Monte-Carlo-Methode, einer Methode zum Simulieren von Zufallsexperimenten mithilfe von Zufallszahlen.

Artikel lesen

Weg-Zeit-Diagramme

In einem Weg-Zeit-Diagramm ist für die Bewegung eines Körpers der Zusammenhang zwischen dem von ihm zurückgelegten Weg s und der Zeit t dargestellt. Man bezeichnet ein solches Diagramm auch als s-t-Diagramm, t-s-Diagramm oder Zeit-Weg-Diagramm.
Die Graphen haben je nach der Art der Bewegung einen jeweils charakteristischen Verlauf. Der Anstieg eines Graphen ist gleich der Geschwindigkeit, wobei man aus dem Graphen sowohl eine Durchschnittsgeschwindigkeit als auch die Momentangeschwindigkeit zu einem bestimmten Zeitpunkt ermitteln kann.

Artikel lesen

Mechanische Wellen

Eine mechanische Welle ist die Ausbreitung einer mechanischen Schwingung im Raum. Allgemeiner gilt:

Eine Welle ist eine zeitlich und räumlich periodische Änderung physikalischer Größen.

Beispiele für mechanische Wellen sind Wasserwellen, Schallwellen oder Erdbebenwellen. Nach dem Verhältnis von Schwingungsrichtung der einzelnen Schwinger und Ausbreitungsrichtung unterscheidet man zwischen Längswellen (Longitudinalwellen) und Querwellen (Transversalwellen). Nach der Art ihrer Ausbreitung kann man zwischen linearen Wellen, Oberflächenwellen und räumlichen Wellen differenzieren.

Artikel lesen

Stehende Wellen

Wellen breiten sich von einem Erreger aus in den Raum hinein aus. Man spricht deshalb manchmal auch von fortschreitenden Wellen. Werden sie an Hindernissen reflektiert, so können sich die hin- und rücklaufenden Wellen überlagern. Es kommt zur Ausbildung einer stehenden Welle, bei der sich Schwingungsknoten und Schwingungsbäuche stets an der gleichen Stellen befinden.

Artikel lesen

Zentraler gerader elastischer Stoß

Ein zentraler elastischer Stoß zwischen zwei Körpern ist dadurch gekennzeichnet, dass

  • nur elastischen Wechselwirkungen auftreten,
  • sich die Körper nach dem Stoß mit unterschiedlichen Geschwindigkeiten weiterbewegen und
  • die mechanische Energie erhalten bleibt.

Für einen solchen Stoß gilt der Impulserhaltungssatz und der Energieerhaltungssatz der Mechanik.

Artikel lesen

Zentraler gerader unelastischer Stoß

Energiebilanz, Energieerhaltungssatz, Energieerhaltungssatz der Mechanik, Impulserhaltungssatz, Reibuntgseffekte, zentraler gerader unelastischer Stoß
Ein zentraler unelastischer Stoß zwischen zwei Körpern ist dadurch gekennzeichnet, dass

  • keine elastischen Wechselwirkungen auftreten,
  • sich die Körper nach dem Stoß mit einer gemeinsamen Geschwindigkeit weiterbewegen und
  • ein Teil der mechanischen Energie in andere Energieformen umgewandelt wird.

Für einen solchen Stoß gilt der Impulserhaltungssatz und der allgemeine Energieerhaltungssatz, nicht aber der Energieerhaltungssatz der Mechanik.

Seitennummerierung

  • Previous Page
  • Seite 1
  • Seite 2
  • Aktuelle Seite 3
  • Seite 4
  • Next Page

79 Suchergebnisse

Fächer
  • Biologie (1)
  • Chemie (3)
  • Deutsch (1)
  • Mathematik (7)
  • Physik (67)
Klassen
  • 5. Klasse (72)
  • 6. Klasse (72)
  • 7. Klasse (72)
  • 8. Klasse (72)
  • 9. Klasse (72)
  • 10. Klasse (72)
  • Oberstufe/Abitur (79)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025