Direkt zum Inhalt

7690 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Reelle Zahlen

Der Bereich der rationalen Zahlen und der Bereich der irrationalen Zahlen bilden zusammen den Bereich der reellen Zahlen.
Reelle Zahlen lassen sich auf der Zahlengeraden darstellen, dabei gehört zu jeder reellen Zahl genau ein Punkt und zu jedem Punkt genau eine reelle Zahl.
Für das Rechnen mit reellen Zahlen gelten im Prinzip die gleichen Regeln und Gesetze wie im Bereich der rationalen Zahlen. Anstelle mit reellen Zahlen rechnet man häufig mit deren rationalen Nährungswerten.

Artikel lesen

Additionstheoreme für Winkelfunktionen

Als Additionstheoreme für Winkelfunktionen werden Formeln bezeichnet, durch die die Funktionswerte von Summen und Differenzen von Winkeln auf die Werte der trigonometrischen Funktionen einzelner Winkel zurückgeführt werden.

Artikel lesen

Areafunktionen (inverse Hyperbelfunktionen)

Da die hyperbolischen Funktionen über ihrem Definitionsbereich (bzw. über einem Teilbereich von diesem) monoton sind, existieren ihre Umkehrfunktionen. Diese werden als Areafunktionen bezeichnet. Sie lassen sich mithilfe des natürlichen Logarithmus darstellen.

Artikel lesen

Betragsfunktion

Die Betragsfunktion ist ein Beispiel für eine stückweise erklärte stetige Funktion.

Artikel lesen

Differenzialrechnung, Grundlagen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Grundlagen der Differenzialrechnung".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Mammutbaum

Lange Zeit wurden die Mammutbäume als die höchsten Bäume der Erde angesehen und werden nur noch vom australischen Eucalyptus amygdalina mit über 150 m übertroffen. Der Name Sequoia wurde durch den Botaniker und Sprachforscher STEPHAN ENDLICHER (1804–1849) geprägt. Dieser wollte damit den Irokesenhäuptling „Se-Quo-Yah“ des pazifischen Nordwestens ehren, der in seiner Zeit Hunderte von Indianersprachen mit einer Spezialschrift festgehalten und so der Nachwelt überliefert hatte.

SEQUOYAH, Sohn einer Cherokee-Indianerin, hat in den Jahren 1809–1821 das Schriftsystem für das Cherokee (Teil der irokesischen Sprachfamilie) entwickelt und ermöglichte somit das Veröffentlichen von Büchern und Zeitungen in der eigenen Sprache.

Artikel lesen

Peter Gustav Lejeune Dirichlet

* 13. Februar 1805 Düren
† 5. Mai 1859 Göttingen

PETER GUSTAV LEJEUNE DIRICHLET lehrte in Berlin und später als Nachfolger von GAUSS in Göttingen.
Er arbeitete vor allem auf den Gebieten der Analysis sowie der Zahlentheorie. Speziell mit seinem Namen verbunden ist der dirichletscher Primzahlsatz.

Artikel lesen

Einkommensteuerfunktion

Nach dem Einkommensteuergesetz (EStG) sind in der Bundesrepublik Deutschland alle Personen, die ihren Wohnsitz oder gewöhnlichen Aufenthalt im Inland haben, unbeschränkt mit sämtlichen Einkünften steuerpflichtig.

Die Besteuerung im Einzelnen wird durch das EStG geregelt. Hier ist auch festgelegt, wie sich aus den Gesamteinkünften das zu versteuernde Einkommen ergibt. Dies ist im Allgemeinen geringer als die Summe der Einkünfte, weil z.B. Vorsorgeaufwendungen, Werbungskosten und steuerfreie Einnahmen (wie Arbeitslosengeld, Altersrenten bis auf eine Ertragsanteil) abgezogen werden können.

Für die Praxis stehen detaillierte Einkommensteuertabellen zur Verfügung, aus denen die für ein bestimmtes Einkommen zu zahlende Steuer direkt abgelesen werden kann. Hinter diesen Tabellen steht die sogenannte Steuerfunktion.

Artikel lesen

Leonhard Euler

* 15. März 1707 Basel
† 18. September 1783 St. Petersburg

LEONHARD EULER war einer der produktivsten Wissenschaftler, was sowohl Fülle und Bedeutsamkeit als auch Vielseitigkeit seiner Beiträge angeht. Zwar gilt er vor allem als Mathematiker, doch hat er unter Nutzung der Mathematik, insbesondere der analytischen Methode, auch andere wissenschaftliche Gebiete (Mechanik, Planetenbewegung, Strömungslehre, Optik u.a.) erfolgreich bearbeitet.
Seine mathematischen Arbeiten beschäftigten sich vor allem mit Problemen der Analysis und der Zahlentheorie.

Artikel lesen

Exponentialfunktionen

Funktionen mit Gleichungen der Form
  y = f ( x ) = a x   ( a ∈ ℝ ;       a > 0   ;   a ≠ 1 )
heißen Exponentialfunktionen.
Ihr Definitionsbereich ist die Menge ℝ der reellen Zahlen.

Artikel lesen

Funktionsbegriff

Der Funktionsbegriff ist von zentraler Bedeutung für die gesamte Mathematik und spielt auch bei Anwendungen der Mathematik in Naturwissenschaft und Technik sowie in Wirtschaft und Gesellschaft eine wichtige Rolle. Seine Entwicklung zur heute gebräuchlichen Form hat Jahrhunderte gedauert. Die Namen bekannter Mathematiker sind mit diesem Prozess eng verbunden.
Unter einer Funktion f versteht man eine eindeutige Zuordnung (Abbildung), die jedem Element x aus einer Menge D f eindeutig ein Element y aus einer Menge W f zuordnet. D f heißt der Definitionsbereich, W f der Wertebereich der Funktion f. Man nennt x ∈ D f ein Argument, das zugeordnete Element y ∈ W f den Funktionswert von x bei der Funktion f. Als Kurzschreibweise gibt man die Funktionsgleichung u.a. in der Form y = f ( x ) an.

Artikel lesen

Darstellung von Funktionen

Für die Darstellung oder Beschreibung von Funktionen gibt es verschiedene Möglichkeiten.
Sind Definitions- und Wertebereich Mengen reeller Zahlen (handelt es sich also um reelle Funktionen), so kommen vor allem folgende Varianten in Frage:

  • Angabe der (geordneten) Paare einander zugeordneter Elemente aus Definitions- und Wertebereich;
  • Beschreibung der Zuordnungsvorschrift in Worten (Wortvorschrift; verbale Beschreibung);
  • Angabe einer die Zuordnung vermittelnden Gleichung y = f ( x ) ;
  • Darstellung der einander zugeordneten Elemente in einer Wertetabelle;
  • Beschreibung durch grafische Darstellungen, z.B. durch ein Pfeildiagramm oder durch Deuten der Zahlenpaare als die Koordinaten von Punkten in einem kartesischen Koordinatensystem (wodurch man einen Graphen der Funktion erhält)

Neben den oben angeführten Darstellungsarten für Funktionen nutzt man auch die sogenannte Parameterdarstellung. Diese ist dadurch charakterisiert, dass sowohl die Variable x als auch die Variable y jeweils für sich durch eine Funktionsgleichung beschrieben werden, die einen (gemeinsamen) Parameter t als unabhängige Variable enthält.

Artikel lesen

Ganzrationale Funktionen

Eine Funktion f , deren Funktionsterm ein Polynom ist, heißt ganzrationale Funktion (bzw. Polynomfunktion).
Ganzrationale Funktionen haben die folgende Form:
  f ( x ) = a n x n + a n − 1 x n − 1 + ... + a 2 x 2 + a 1 x + a 0           ( mit        n ∈ ℕ        und        a i ∈ ℝ )
Ist a n ≠ 0 , so hat f den Grad n .

Artikel lesen

Funktionen, Ganzrationale

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Ganzrationale Funktionen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Gebrochenrationale Funktionen

Eine Funktion f, deren Funktionsterm ein Quotient zweier Polynome p ( x )  und  q ( x ) ist, heißt gebrochenrationale Funktion. Man unterscheidet zwischen echt und unecht gebrochenrationalen Funktionen.
Durch Polynomdivision kann der Funktionsterm einer unecht gebrochenrationalen Funktion in einen ganzrationalen und einen echt gebrochenrationalen Term zerlegt werden.

Artikel lesen

Hyperbolische Funktionen (Hyperbelfunktionen)

Die sogenannten hyperbolischen Funktionen traten in ihren Grundlagen u.a. bereits bei NEWTON auf. Die Theorie dieser Funktionen begründete der italienische Mathematiker VINCENZO RICCATI.
Im Jahre 1768 kam JOHANN HEINRICH LAMBERT auf die Idee, sie für die Trigonometrie zu nutzen.

Artikel lesen

Meerschweinchen


Meerschweinchen sind aufgrund ihrer zutraulichen Art und ihres ausgeprägten Sozialverhaltens beliebte Haustiere für Kinder. Doch um lange Zeit Freude an diesen possierlichen Tieren zu haben, muss man sie entsprechend ihrer natürlichen Lebensweise halten, also artgerecht.

Artikel lesen

Funktionenklassen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Funktionenklassen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Funktionen von mehreren Variablen

Der Funktionsbegriff lässt sich für Funktionen mit zwei und mehr (unabhängigen) Variablen erweitern.
Elemente der Definitionsmenge sind dann Zahlenpaare, Zahlentripel bzw. n-Tupel.
Funktionen mit zwei unabhängigen Variablen lassen sich als Flächen im dreidimensionalen Raum darstellen.

Artikel lesen

Quadratische Funktionen

Eine Funktion mit einer Gleichung der Form
  y = f ( x ) = a x 2 + b x + c   ( mit  a ≠ 0,       x ∈ ℝ )
oder einer Gleichung, die durch äquivalentes Umformen in diese Form überführt werden kann, heißt quadratische Funktion.
Dabei nennt man a x 2 das quadratische Glied, bx das lineare Glied und c das absolute Glied der Funktionsgleichung.
Der Graph einer quadratischen Funktion ist eine Parabel.

Artikel lesen

Funktionenscharen (Verschiebung, Streckung, Stauchung und Spiegelung von Funktionsgraphen)

In Funktionsgleichungen können Parameter in additiver und multiplikativer Verknüpfung mit Funktionstermen bzw. mit der Funktionsvariablen auftreten. Aus einer Funktionsgleichung y = f   ( x ) entstehen so z.B. die Gleichungen y = f   ( x ) + c , y = f   ( x + d ) , y = a ⋅ f   ( x ) oder y = f   ( b ⋅ x ) .
Diese Parameter haben Einfluss auf Eigenschaften und Verlauf der Graphen der Funktion.

Artikel lesen

Verketten von Funktionen

Ist für x ∈ D g eine Funktion z = g ( x ) mit dem Wertebereich W g gegeben und ferner für z ∈ W g eine Funktion y = f ( z ) , dann heißt y = f ( g ( x ) )         ( mit        x ∈ D g ) mittelbare (verkettete) Funktion von x .
Schreibweise: y = f ∘ g (gelesen: f „Kuller“ g oder f „Kringel“ g)
Anmerkungen: Es ist die Verkettungsvoraussetzung W g ⊆ D f zu beachten.
f ∘ g bedeutet: Erst g dann f anwenden (d.h. f nach g ).

Die Funktion f nennt man äußere Funktion, die Funktion g innere Funktion der verketteten Funktion y = f ( g ( x ) ) .

Artikel lesen

Verknüpfen von Funktionen

Funktionen mit einem gemeinsamen Definitionsbereich können addiert, subtrahiert und multipliziert werden, d.h., es gilt:
  ( f + g ) ( x ) = f ( x ) + g ( x ) ( f − g ) ( x ) = f ( x ) − g ( x ) ( f ⋅ g ) ( x ) = f ( x ) ⋅ g ( x )

Wenn g ( x ) ≠ 0 ist, dann lässt sich auch der Kehrwert ( 1 g ) ( x ) = 1 g ( x ) und der Quotient ( f g ) ( x ) = f ( x ) g ( x ) bilden.

Artikel lesen

Funktionen mit der Gleichung y = mx

Jeder direkt proportionale Zusammenhang zwischen zwei Größen x und y kann durch eine spezielle lineare Funktion mit der Gleichung
  y = f ( x ) = m x   ( m x ≠ 0 )
beschrieben werden.
Definitonsbereich und Wertevorrat (Wertebereich) von f ist die Menge der reellen Zahlen ℝ . Der Graph von f ist eine Gerade, die durch den Koordinatenursprung O verläuft.

Artikel lesen

Niccolò Tartaglia

* um 1500 Brescia;
† 14. Dezember 1557 Venedig

NICCOLÒ TARTAGLIA war Rechenmeister in seiner Heimatstadt Brescia sowie u.a. in Verona und Venedig. Anlässlich eines Rechenwettstreits beschäftigte er sich intensiv mit dem Lösen kubischer Gleichungen. Die von TARTAGLIA gefundene Lösungsformel für derartige Gleichungen ist heute unter dem Namen cardanische Formel bekannt.

Seitennummerierung

  • Previous Page
  • Seite 218
  • Seite 219
  • Aktuelle Seite 220
  • Seite 221
  • Seite 222
  • Seite 223
  • Next Page

7690 Suchergebnisse

Fächer
  • Biologie (993)
  • Chemie (1168)
  • Deutsch (965)
  • Englisch (649)
  • Geografie (348)
  • Geschichte (408)
  • Kunst (332)
  • Mathematik (884)
  • Musik (311)
  • Physik (1278)
  • Politik/Wirtschaft (354)
Klassen
  • 5. Klasse (4621)
  • 6. Klasse (4621)
  • 7. Klasse (4621)
  • 8. Klasse (4621)
  • 9. Klasse (4621)
  • 10. Klasse (4621)
  • Oberstufe/Abitur (4820)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2026