Direkt zum Inhalt

34 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Innere Ableitungen

Mit der Veränderung des Stammvokals im Basismorphem wird der Wechsel von einer Wortart in die andere möglich. Man spricht dann von der inneren Ableitung.
Die Substantive übernehmen oft von einem starken Verb den Stammvokal des Präteritums oder des Partizips II. Eine Besonderheit hierbei ist, dass sich der Wechsel der Wortarten auch ohne Ablaut vollziehen kann.

Ableitung mit Ablaut:  
sprechensprachdie Sprachegesprächig
gebengabdie Gabe 
    
Vokalwechsel von o zu u:  
werfengeworfender Wurf 
betrügenbetrogder Betrug 
    
Ableitungen ohne Ablaut:  
essen das Essen 
angeln das Angeln 
Artikel lesen

Wortbildung, Adjektiv

Ähnlich wie bei Substantiven gibt es auch bei den Adjektiven Determinativkomposita (aus Grund- [Haupt-] und Bestimmungswort) und Kopulativkomposita (gleichrangige Zusammensetzungen). Da viele Partizipformen im Satzzusammenhang adjektivische Funktion übernehmen (legen – gelegt, der abgelegte Mantel), werden sie bei den Einteilungen mitberücksichtigt.
Mithilfe der Suffixe werden vielfach aus Substantiven und Verben Adjektive gebildet. Suffixbildungen dienen beim Adjektiv also der Transposition (Übertragung einer anderen Bedeutung), aber auch der Ergänzung des Grundwortschatzes (semantische Abwandlung: alt – ältlich).

Artikel lesen

Monotonie

Bei der Untersuchung von Funktionen und ihren Anwendungen kann es von Interesse sein zu ermitteln, wie sich die Funktionswerte mit wachsenden Argumenten verändern bzw. wie der Graph der Funktion verläuft, wenn die x-Werte seiner Punkte größer werden. Das führt auf den Begriff der Monotonie einer Funktion.

Artikel lesen

Nachsilben

Um nicht für jede neue Bedeutung ein neues Wort einzuführen, werden in sehr vielen Sprachen bestimmte Wortbausteine benutzt.
Die Kenntnis solcher Wortbausteine, wie z. B. bestimmter Vor- und Nachsilben (prefixes, suffixes), kann beim Verstehen unbekannter Wörter helfen.

Artikel lesen

Vorsilben

Um nicht für jede neue Bedeutung ein neues Wort einzuführen, werden in sehr vielen Sprachen bestimmte Wortbausteine benutzt.
Die Kenntnis solcher Wortbausteine, wie z. B. bestimmter Vor- und Nachsilben (prefixes, suffixes), kann beim Verstehen unbekannter Wörter helfen.

Artikel lesen

Word formation

Wortfamilien bestehen aus Wörtern mit derselben Wurzel bzw. demselben Wortstamm (root). Eine Wortfamilie ist eine Sammlung von Wörtern, die etymologische Gemeinsamkeiten aufweist. Wenn bei einem neuen Wort zumindest der Wortstamm bekannt ist, kann die Bedeutung leichter erschlossen werden.

Artikel lesen

Allgemeine Bewegungsgesetze

Bewegungen können auf unterschiedlicher Bahnen in verschiedener Art erfolgen: Sie können geradlinig oder krummlinig verlaufen, können gleichförmig, gleichmäßig beschleunigt oder ungleichmäßig beschleunigt sein. Für alle speziellen Fälle lassen sich die entsprechenden Bewegungsgesetze formulieren.
Man kann die Bewegungsgesetze aber auch so allgemein formulieren, dass fast alle Spezialfälle aus ihnen ableitbar sein. Diese allgemeinen Bewegungsgesetze sind in dem Beitrag dargestellt und erläutert.

Artikel lesen

Gottfried Wilhelm Leibniz

GOTTFRIED WILHELM LEIBNIZ (1646 bis 1716), deutscher Mathematiker und Philosoph
* 01. Juli 1646 Leipzig
† 14. November 1716 Hannover

GOTTFRIED WILHELM LEIBNIZ war einer der letzen Universalgelehrten der Neuzeit. Bedeutende wissenschaftliche Leistungen vollbrachte er auf mathematischem und philosophischem Gebiet, aber auch als Physiker und Techniker, Geschichts- und Sprachforscher bzw. Jurist.
Bezüglich der Mathematik sind vor allem seine Arbeiten zur Infinitesimalrechnung sowie zur Logik zu nennen. Sein um 1675 entwickelte „Calculus“ enthält Differenziationszeichen, Regeln zum Differenzieren sowie Aussagen zu Extremwerten und Wendepunkten von Funktionen. Auf LEIBNIZ gehen auch die Begriffe Funktion, Koordinaten, Differenzial- und Integralrechnung sowie das Integralzeichen selbst zurück. Schon vor 1683 entwickelte er eine mechanische Rechenmaschine.

Artikel lesen

Krümmung und Wendepunkt

Durchfährt ein Rennfahrer beispielsweise die Grand-Prix-Strecke des Eurospeedway Lausitz, so muss er seinen Wagen durch eine Vielzahl von Links- und Rechtskurven mit dazwischenliegenden „Wendestellen“ lenken.

Die Graphen monotoner Funktionen kann man in ähnlicher Weise auf ihr sogenanntes Krümmungsverhalten bzw. auf Wendestellen untersuchen.

Artikel lesen

Gottfried Wilhelm Leibniz

* 1. Juli 1646 Leipzig
† 14. November 1716 Hannover

GOTTFRIED WILHELM LEIBNIZ war einer der letzen Universalgelehrten der Neuzeit. Bedeutende wissenschaftliche Leistungen vollbrachte er auf mathematischem und philosophischem Gebiet, aber auch als Physiker und Techniker, Geschichts- und Sprachforscher bzw. Jurist.

Bezüglich der Mathematik sind vor allem seine Arbeiten zur Infinitesimalrechnung sowie zur Logik (Formalisierung der Mathematik) zu nennen. Sein um 1675 entwickelter (aber erst ab 1682 publizierter) „Calculus“ enthält Differenziationszeichen, Regeln zum Differenzieren sowie Aussagen zu Extremwerten und Wendepunkten. Auf LEIBNIZ zurück gehen auch das Integralzeichen sowie die Begriffe Differenzial- und Integralrechnung, Funktion und Koordinaten. Schon vor 1683 entwickelte er eine mechanische Rechenmaschine. LEIBNIZ war Begründer und zugleich erster Präsident der Berliner Akademie der Wissenschaften.

Artikel lesen

Ableitung von Potenzfunktionen

Unter einer Potenzfunktion wird eine Funktion mit einer Gleichung der Form y = f ( x ) = x n ( x ∈ ℝ ; n ∈ ℤ \ { 0 } ) verstanden.

Ihre Ableitung erfolgt mithilfe der Potenzregel der Differenzialrechnung:

  • Die Funktion f ( x ) = x n       ( n ∈ ℕ ;       n ≥ 1 ) ist differenzierbar und f ′ ( x ) = n ⋅ x n   −   1 gilt.
Artikel lesen

Potenzregel der Differenzialrechnung

Im Folgenden soll die Potenzregel der Differenzialrechnung für Potenzfunktionen f ( x ) = x n bewiesen werden.
Über die natürlichen Zahlen als Exponenten hinaus ist die Potenzregel auf Potenzfunktionen mit ganzzahligen Exponenten n ( f a l l s       x 0 ≠ 0 ) , mit rationalen Exponenten n ( x > 0 ) und sogar mit reellen Exponenten n ( x > 0 ) anwendbar. Man nennt diesen Sachverhalt auch die erweiterte Potenzregel.

Artikel lesen

Produktregel der Differenzialrechnung

Im Folgenden soll die Produktregel der Differenzialrechnung bewiesen werden.
Die Produktregel lässt sich auch auf endlich viele Faktoren erweitern. 

Artikel lesen

Extremwertprobleme beim senkrechten Wurf

In der Mechanik werden u.a. Bewegungsvorgänge von Körpern untersucht. Dabei wird in der Regel nach dem zurückgelegten Weg, der Geschwindigkeit und der Beschleunigung gefragt. Insbesondere bei den Wurfbewegungen lassen sich viele Fragestellungen mithilfe der Methoden der Differenzialrechnung bearbeiten.

Beim senkrechten Wurf nach oben geht man davon aus, dass ein Körper mit einer bestimmten Anfangsgeschwindigkeit senkrecht nach oben „geschossen“ wird. Anschließend wird untersucht, wie er sich im Schwerefeld der Erde bewegt.

Mithilfe der 1. Ableitung lassen sich Aussagen über die Momentangeschwindigkeit oder die maximale Steighöhe gewinnen.

Artikel lesen

Tangentenproblem

In der historischen Entwicklung der Differenzialrechnung spielte das sogenannte Tangentenproblem eine große Rolle.

Artikel lesen

Bestimmtes Integral als Funktion der oberen Grenze

Der Wert eines bestimmten Integrals hängt von der Integrandenfunktion und den Integrationsgrenzen ab. Bei gegebener Integrandenfunktion können sich Untersuchungen am bestimmten Integral auf die Überprüfung des Einflusses von Veränderungen der Integrationsgrenzen beschränken.

Artikel lesen

Differenzialrechnung, Grundlagen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Grundlagen der Differenzialrechnung".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Ableitung einer Funktion

Existiert an der Stelle x 0 des Definitionsbereiches einer Funktion f der Grenzwert
  lim h → 0 f ( x 0 + h ) − f ( x 0 ) h ,
so wird dieser als Ableitung oder Differenzialquotient von f an der Stelle x 0 bezeichnet.
Die Ableitung gibt den Anstieg des Funktionsgraphen an der Stelle x 0 an.

Artikel lesen

Ableitungen höherer Ordnung

Höhere Ableitungen einer Funktion f gestatten Rückschlüsse auf den Verlauf des Funktionsgraphen.
Ein Beispiel praktischer Anwendung höherer Ableitungen stellt die Untersuchung von Bewegungsabläufen in der Physik (etwa der Anfahrfunktion eines Kraftfahrzeuges) dar. Geschwindigkeit und Beschleunigung sind hier als erste bzw. zweite Ableitung des Weges nach der Zeit definiert.

Artikel lesen

Ableitung der Kosinusfunktion

Im Folgenden wird gezeigt, dass die Kosinusfunktion f ( x ) = cos x im gesamten Definitionsbereich differenzierbar ist und die Ableitungsfunktion f ' ( x ) = −   sin x   besitzt.
Dazu betrachten wir den Graph der Kosinusfunktion f ( x ) = cos x       ( x ∈ ℝ ) im Intervall von 0 bis 2   π .

Artikel lesen

Ableitungsfunktion

Existiert der Differenzialquotient einer Funktion y = f ( x ) für alle Punkte eines Intervalls, so ist die Funktion im ganzen Intervall differenzierbar. Jedem x-Wert des Intervalls ist ein Wert des Differenzialquotienten zugeordnet, der also wiederum eine Funktion von x ist. Man nennt diese die abgeleitete Funktion oder Ableitungsfunktion (oder kurz Ableitung):
  f ′ :     x → f ′ ( x )
Anmerkung: f heißt Stammfunktion zu f ′ .

Artikel lesen

Ableitung der Sinusfunktion

Im Folgenden wird gezeigt, dass die Sinusfunktion f ( x ) = sin x im gesamten Definitionsbereich differenzierbar ist und die Ableitungsfunktion f ' ( x ) = cos x besitzt.
Dazu betrachten wir den Graph der Sinusfunktion f ( x ) = sin x       ( x ∈ ℝ ) im Intervall von 0 bis 2   π .

Artikel lesen

Ableitung der Tangens- und der Kotangensfunktion

Im Folgenden wird gezeigt, dass die Tangensfunktion f ( x ) = tan x in ihrem gesamten Definitionsbereich ( x ∈ ℝ ;       x ≠ π 2 + k ⋅ π ;       k ∈ ℤ ) differenzierbar ist und dort die Ableitungsfunktion f ' ( x ) = 1 cos 2 x       b z w .       f ' ( x ) = 1 + tan 2 x besitzt.
Die Ableitung der Kotangensfunktion kann auf analogem Wege ermittelt werden.

Dazu betrachten wir den Graph der Tangensfunktion f ( x ) = tan x       ( x ∈ ℝ ;     x ≠ π 2 + k ⋅ π ;     k ∈ ℤ ) im Intervall von 0 bis 2   π .

Artikel lesen

Geschichte der Analysis

Die Analysis (oder auch Infinitesimalrechnung) beschäftigt sich im Wesentlichen mit der Differenzial- und Integralrechnung.
Ausgangspunkt für die Integralrechnung war das schon in der Antike betrachtete Problem der Bestimmung des Inhalts von Flächen und Körpern, wie etwa von Rotationskörpern.
Die Differenzialrechnung hat ihre Wurzeln dagegen im Tangentenproblem, mit dem sich Mathematiker im 17. Jahrhundert intensiver beschäftigten.
Im 18. Jahrhundert wurde der Zusammenhang zwischen dem Differenzieren und Integrieren erkannt und im Hauptsatz der Differenzial- und Integralrechnung formuliert. Hierzu trugen wesentlich ISAAC NEWTON und GOTTFRIED WILHELM LEIBNIZ bei.

Artikel lesen

Differenziationsverfahren

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Differenziationsverfahren".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Seitennummerierung

  • Aktuelle Seite 1
  • Seite 2
  • Next Page

34 Suchergebnisse

Fächer
  • Deutsch (2)
  • Englisch (6)
  • Mathematik (25)
  • Physik (1)
Klassen
  • 5. Klasse (7)
  • 6. Klasse (7)
  • 7. Klasse (7)
  • 8. Klasse (7)
  • 9. Klasse (7)
  • 10. Klasse (7)
  • Oberstufe/Abitur (27)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2026