Direkt zum Inhalt

34 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Wortbildung, Adjektiv

Ähnlich wie bei Substantiven gibt es auch bei den Adjektiven Determinativkomposita (aus Grund- [Haupt-] und Bestimmungswort) und Kopulativkomposita (gleichrangige Zusammensetzungen). Da viele Partizipformen im Satzzusammenhang adjektivische Funktion übernehmen (legen – gelegt, der abgelegte Mantel), werden sie bei den Einteilungen mitberücksichtigt.
Mithilfe der Suffixe werden vielfach aus Substantiven und Verben Adjektive gebildet. Suffixbildungen dienen beim Adjektiv also der Transposition (Übertragung einer anderen Bedeutung), aber auch der Ergänzung des Grundwortschatzes (semantische Abwandlung: alt – ältlich).

Artikel lesen

Nachsilben

Um nicht für jede neue Bedeutung ein neues Wort einzuführen, werden in sehr vielen Sprachen bestimmte Wortbausteine benutzt.
Die Kenntnis solcher Wortbausteine, wie z. B. bestimmter Vor- und Nachsilben (prefixes, suffixes), kann beim Verstehen unbekannter Wörter helfen.

Artikel lesen

Vorsilben

Um nicht für jede neue Bedeutung ein neues Wort einzuführen, werden in sehr vielen Sprachen bestimmte Wortbausteine benutzt.
Die Kenntnis solcher Wortbausteine, wie z. B. bestimmter Vor- und Nachsilben (prefixes, suffixes), kann beim Verstehen unbekannter Wörter helfen.

Artikel lesen

Word formation

Wortfamilien bestehen aus Wörtern mit derselben Wurzel bzw. demselben Wortstamm (root). Eine Wortfamilie ist eine Sammlung von Wörtern, die etymologische Gemeinsamkeiten aufweist. Wenn bei einem neuen Wort zumindest der Wortstamm bekannt ist, kann die Bedeutung leichter erschlossen werden.

Artikel lesen

Innere Ableitungen

Mit der Veränderung des Stammvokals im Basismorphem wird der Wechsel von einer Wortart in die andere möglich. Man spricht dann von der inneren Ableitung.
Die Substantive übernehmen oft von einem starken Verb den Stammvokal des Präteritums oder des Partizips II. Eine Besonderheit hierbei ist, dass sich der Wechsel der Wortarten auch ohne Ablaut vollziehen kann.

Ableitung mit Ablaut:  
sprechensprachdie Sprachegesprächig
gebengabdie Gabe 
    
Vokalwechsel von o zu u:  
werfengeworfender Wurf 
betrügenbetrogder Betrug 
    
Ableitungen ohne Ablaut:  
essen das Essen 
angeln das Angeln 
Artikel lesen

Monotonie

Bei der Untersuchung von Funktionen und ihren Anwendungen kann es von Interesse sein zu ermitteln, wie sich die Funktionswerte mit wachsenden Argumenten verändern bzw. wie der Graph der Funktion verläuft, wenn die x-Werte seiner Punkte größer werden. Das führt auf den Begriff der Monotonie einer Funktion.

Artikel lesen

Allgemeine Bewegungsgesetze

Bewegungen können auf unterschiedlicher Bahnen in verschiedener Art erfolgen: Sie können geradlinig oder krummlinig verlaufen, können gleichförmig, gleichmäßig beschleunigt oder ungleichmäßig beschleunigt sein. Für alle speziellen Fälle lassen sich die entsprechenden Bewegungsgesetze formulieren.
Man kann die Bewegungsgesetze aber auch so allgemein formulieren, dass fast alle Spezialfälle aus ihnen ableitbar sein. Diese allgemeinen Bewegungsgesetze sind in dem Beitrag dargestellt und erläutert.

Artikel lesen

Bestimmtes Integral als Funktion der oberen Grenze

Der Wert eines bestimmten Integrals hängt von der Integrandenfunktion und den Integrationsgrenzen ab. Bei gegebener Integrandenfunktion können sich Untersuchungen am bestimmten Integral auf die Überprüfung des Einflusses von Veränderungen der Integrationsgrenzen beschränken.

Artikel lesen

Gottfried Wilhelm Leibniz

GOTTFRIED WILHELM LEIBNIZ (1646 bis 1716), deutscher Mathematiker und Philosoph
* 01. Juli 1646 Leipzig
† 14. November 1716 Hannover

GOTTFRIED WILHELM LEIBNIZ war einer der letzen Universalgelehrten der Neuzeit. Bedeutende wissenschaftliche Leistungen vollbrachte er auf mathematischem und philosophischem Gebiet, aber auch als Physiker und Techniker, Geschichts- und Sprachforscher bzw. Jurist.
Bezüglich der Mathematik sind vor allem seine Arbeiten zur Infinitesimalrechnung sowie zur Logik zu nennen. Sein um 1675 entwickelte „Calculus“ enthält Differenziationszeichen, Regeln zum Differenzieren sowie Aussagen zu Extremwerten und Wendepunkten von Funktionen. Auf LEIBNIZ gehen auch die Begriffe Funktion, Koordinaten, Differenzial- und Integralrechnung sowie das Integralzeichen selbst zurück. Schon vor 1683 entwickelte er eine mechanische Rechenmaschine.

Artikel lesen

Ableitung einer Funktion

Existiert an der Stelle x 0 des Definitionsbereiches einer Funktion f der Grenzwert
  lim h → 0 f ( x 0 + h ) − f ( x 0 ) h ,
so wird dieser als Ableitung oder Differenzialquotient von f an der Stelle x 0 bezeichnet.
Die Ableitung gibt den Anstieg des Funktionsgraphen an der Stelle x 0 an.

Artikel lesen

Ableitungen höherer Ordnung

Höhere Ableitungen einer Funktion f gestatten Rückschlüsse auf den Verlauf des Funktionsgraphen.
Ein Beispiel praktischer Anwendung höherer Ableitungen stellt die Untersuchung von Bewegungsabläufen in der Physik (etwa der Anfahrfunktion eines Kraftfahrzeuges) dar. Geschwindigkeit und Beschleunigung sind hier als erste bzw. zweite Ableitung des Weges nach der Zeit definiert.

Artikel lesen

Ableitung der Kosinusfunktion

Im Folgenden wird gezeigt, dass die Kosinusfunktion f ( x ) = cos x im gesamten Definitionsbereich differenzierbar ist und die Ableitungsfunktion f ' ( x ) = −   sin x   besitzt.
Dazu betrachten wir den Graph der Kosinusfunktion f ( x ) = cos x       ( x ∈ ℝ ) im Intervall von 0 bis 2   π .

Artikel lesen

Ableitungsfunktion

Existiert der Differenzialquotient einer Funktion y = f ( x ) für alle Punkte eines Intervalls, so ist die Funktion im ganzen Intervall differenzierbar. Jedem x-Wert des Intervalls ist ein Wert des Differenzialquotienten zugeordnet, der also wiederum eine Funktion von x ist. Man nennt diese die abgeleitete Funktion oder Ableitungsfunktion (oder kurz Ableitung):
  f ′ :     x → f ′ ( x )
Anmerkung: f heißt Stammfunktion zu f ′ .

Artikel lesen

Ableitung der Sinusfunktion

Im Folgenden wird gezeigt, dass die Sinusfunktion f ( x ) = sin x im gesamten Definitionsbereich differenzierbar ist und die Ableitungsfunktion f ' ( x ) = cos x besitzt.
Dazu betrachten wir den Graph der Sinusfunktion f ( x ) = sin x       ( x ∈ ℝ ) im Intervall von 0 bis 2   π .

Artikel lesen

Ableitung der Tangens- und der Kotangensfunktion

Im Folgenden wird gezeigt, dass die Tangensfunktion f ( x ) = tan x in ihrem gesamten Definitionsbereich ( x ∈ ℝ ;       x ≠ π 2 + k ⋅ π ;       k ∈ ℤ ) differenzierbar ist und dort die Ableitungsfunktion f ' ( x ) = 1 cos 2 x       b z w .       f ' ( x ) = 1 + tan 2 x besitzt.
Die Ableitung der Kotangensfunktion kann auf analogem Wege ermittelt werden.

Dazu betrachten wir den Graph der Tangensfunktion f ( x ) = tan x       ( x ∈ ℝ ;     x ≠ π 2 + k ⋅ π ;     k ∈ ℤ ) im Intervall von 0 bis 2   π .

Artikel lesen

Geschichte der Analysis

Die Analysis (oder auch Infinitesimalrechnung) beschäftigt sich im Wesentlichen mit der Differenzial- und Integralrechnung.
Ausgangspunkt für die Integralrechnung war das schon in der Antike betrachtete Problem der Bestimmung des Inhalts von Flächen und Körpern, wie etwa von Rotationskörpern.
Die Differenzialrechnung hat ihre Wurzeln dagegen im Tangentenproblem, mit dem sich Mathematiker im 17. Jahrhundert intensiver beschäftigten.
Im 18. Jahrhundert wurde der Zusammenhang zwischen dem Differenzieren und Integrieren erkannt und im Hauptsatz der Differenzial- und Integralrechnung formuliert. Hierzu trugen wesentlich ISAAC NEWTON und GOTTFRIED WILHELM LEIBNIZ bei.

Artikel lesen

Differenziationsverfahren

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Differenziationsverfahren".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Differenzierbarkeit von Funktionen

Die Definitionen von Differenzierbarkeit und Stetigkeit führen zu der Folgerung, eine Funktion f kann an einer Stelle x 0 stetig, aber nicht differenzierbar sein.
Ist f in x 0 allerdings differenzierbar, dann ist sie in x 0 auch stetig.

Artikel lesen

Grafisches Differenzieren

Die Ableitung einer Funktion f an einer Stelle x 0 gibt bekanntermaßen den Anstieg der Tangente an den Graphen der Funktion im Punkt P 0 ( x 0 ;   f ( x 0 ) ) an.
Ebenso spricht man vom Anstieg des Graphen im Punkt P 0 .
Im Folgenden wird ein Verfahren zur Bestimmung der Ableitung an einer Stelle x 0 mittels zeichnerischen oder grafischen Differenzierens vorgestellt.

Artikel lesen

Extremwertprobleme in der Wirtschaft

Viele Prozesse im Wirtschaftsleben lassen sich mithilfe von Funktionen beschreiben. Durch eine mathematische Modellbildung ist man dann in der Lage, über Optimierungsmöglichkeiten in dem vorliegenden Sachverhalt gezielt nachzudenken. Oft steht dabei die Frage der Gewinnmaximierung bzw. die Minimierung der Produktions- oder Vertriebskosten im Mittelpunkt.

Das Vorgehen beim Lösen einer solchen Extremwertaufgabe soll im Folgenden durch ein Beispiel verdeutlicht werden.

Artikel lesen

Faktorregel der Differenzialrechnung

Es sei g mit y = g ( x ) eine über ihrem gesamten Definitionsbereich D f differenzierbare Funktion mit der Ableitung y ′ = g ′ ( x ) .
Durch Multiplikation der Funktionsgleichung von g mit dem konstanten Faktor k ∈ ℝ erhält man die Funktion f ( x ) = k ⋅ g ( x ) .

Artikel lesen

Kettenregel der Differenzialrechnung

Im Folgenden soll die Kettenregel der Differenzialrechnung bewiesen werden.
Die Kettenregel besagt: Die Ableitung einer verketteten Funktion ist gleich dem Produkt der Ableitungen von äußerer und innerer Funktion an der jeweiligen Stelle.
Für die Anwendung der Kettenregel ist eine auf der leibnizschen Schreibweise d y d x anstelle von f ' ( x ) beruhende Notation sehr einprägsam.

Artikel lesen

Konstantenregel der Differenzialrechnung

Wir vermuten das Folgende: Eine konstante Funktion f ( x ) = c       ( c ∈ ℝ ,       a b e r       f e s t ) besitzt für alle x ∈ ℝ die Ableitung f ′ ( x ) = 0.

Artikel lesen

Krümmung und Wendepunkt

Durchfährt ein Rennfahrer beispielsweise die Grand-Prix-Strecke des Eurospeedway Lausitz, so muss er seinen Wagen durch eine Vielzahl von Links- und Rechtskurven mit dazwischenliegenden „Wendestellen“ lenken.

Die Graphen monotoner Funktionen kann man in ähnlicher Weise auf ihr sogenanntes Krümmungsverhalten bzw. auf Wendestellen untersuchen.

Artikel lesen

Gottfried Wilhelm Leibniz

* 1. Juli 1646 Leipzig
† 14. November 1716 Hannover

GOTTFRIED WILHELM LEIBNIZ war einer der letzen Universalgelehrten der Neuzeit. Bedeutende wissenschaftliche Leistungen vollbrachte er auf mathematischem und philosophischem Gebiet, aber auch als Physiker und Techniker, Geschichts- und Sprachforscher bzw. Jurist.

Bezüglich der Mathematik sind vor allem seine Arbeiten zur Infinitesimalrechnung sowie zur Logik (Formalisierung der Mathematik) zu nennen. Sein um 1675 entwickelter (aber erst ab 1682 publizierter) „Calculus“ enthält Differenziationszeichen, Regeln zum Differenzieren sowie Aussagen zu Extremwerten und Wendepunkten. Auf LEIBNIZ zurück gehen auch das Integralzeichen sowie die Begriffe Differenzial- und Integralrechnung, Funktion und Koordinaten. Schon vor 1683 entwickelte er eine mechanische Rechenmaschine. LEIBNIZ war Begründer und zugleich erster Präsident der Berliner Akademie der Wissenschaften.

Seitennummerierung

  • Aktuelle Seite 1
  • Seite 2
  • Next Page

34 Suchergebnisse

Fächer
  • Deutsch (2)
  • Englisch (6)
  • Mathematik (25)
  • Physik (1)
Klassen
  • 5. Klasse (7)
  • 6. Klasse (7)
  • 7. Klasse (7)
  • 8. Klasse (7)
  • 9. Klasse (7)
  • 10. Klasse (7)
  • Oberstufe/Abitur (27)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025