Direkt zum Inhalt

313 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Summarische Zinsen

Bei der kaufmännischen Zinsrechnung sind häufig Zinsen zu einem feststehenden Zinssatz zu berechnen, wobei aber Unterschiede bei den zu verzinsenden Kapitalwerten sowie den Zeiten auftreten können. Hierbei ist es zweckmäßig, summarische Zinsen zu berechnen.

Artikel lesen

Zinseszins, Berechnen

Wenn ein Kapital über längere Zeiträume verzinst wird, werden die anfallenden Zinsen im Allgemeinen dem Kapital zugeschlagen und im folgenden Jahr mit verzinst.
Die Rechnung dafür heißt Zinseszinsrechnung.
Dabei wächst ein Anfangskapital K 0 bei einem Prozentsatz p % über einen Zeitraum von n Jahren auf ein Endkapital K n .

Artikel lesen

Halbwertzeit

Eine wichtige Größe in der chemischen Kinetik ist die Halbwertszeit. Diese gibt an, nach welcher Zeit sich die Anfangskonzentration eines Ausgangsstoffes genau um die Hälfte verringert hat. Der Begriff wird in ähnlicher Weise in der Kernchemie benutzt. Bei kernchemischen Reaktionen ist die Halbwertszeit die Zeit, nach der von einem radioaktiven Nuklid die Hälfte der ursprünglich vorhandenen Atome in andere Atome umgewandelt wurde.

 

Artikel lesen

Massenwirkungsgesetz

Bei reversiblen chemischen Reaktionssystemen stellt sich ein Gleichgewicht zwischen Hin- und Rückreaktion ein. Solche Reaktionen verlaufen nicht vollständig, d. h. die Konzentration der Ausgangsstoffe sinkt nicht auf null. In Abhängigkeit von den Reaktionsbedingungen (Druck, Temperatur) werden konstante Gleichgewichtskonzentrationen der an der Reaktion beteiligten Stoffe erreicht. Mit Hilfe des Massenwirkungsgesetzes können diese in Form der Gleichgewichtskonstanten berechnet werden.

Artikel lesen

Neutralisationsreaktionen

Neutralisationsreaktionen sind spezielle Reaktionen zwischen Säuren und Basen, bei denen äquivalente Stoffmengen der Basen und Säuren miteinander reagieren. Bei dieser exothermen Reaktion heben sich die Wirkung der Säure und Base gegenseitig auf und man erhält in der Regel eine neutrale Lösung mit dem pH-Wert von 7. Dieser Fakt wird in der Technik, in der Medizin bzw. auch in der Landwirtschaft häufig bewusst ausgenutzt, spielt aber auch in der oft in der Natur eine Rolle.

Artikel lesen

Kalorimetrische Messungen

Unter dem Begriff „kalorimetrische Messungen“ fasst man solche physikalischen Messungen zusammen, bei denen man z. B. Wärmekapazitäten von Stoffen, den physiologischen Brennwert von Lebensmitteln oder chemische Reaktionsenthalpien quantitativ bestimmen kann. Dazu benutzt man verschiedene Arten von Kalorimetern, die sich im Messprinzip oder in der Konstruktion unterscheiden. Die während des Experiments freigesetzte bzw. verbrauchte Wärme wird aus der Temperaturänderung der Kalorimeterflüssigkeit berechnet.

Artikel lesen

Trapez

Ein Viereck mit einem Paar paralleler Seiten heißt Trapez.
Die parallelen Seiten sind die Grundseiten, die beiden anderen Seiten die Schenkel des Trapezes.
Der Abstand der Grundseiten ist die Höhe h des Trapezes.
Die Verbindungsstrecke der Mitten der Schenkel heißt Mittellinie m.
Sind in einem Trapez die Schenkel gleich lang, so heißt es gleichschenklig. Hat das Trapez einen rechten Innenwinkel, so heißt es rechtwinkliges Trapez.

Artikel lesen

Quadratische Gleichungen, Lösungsformel

Die Gleichung zur Berechnung der beiden Lösungen x 1  und  x 2 der quadratischen Gleichung aus den Parametern p und q heißt Lösungsformel einer quadratischen Gleichung in der Normalform.
Der Term ( p 2 ) 2 − q heißt Diskriminante der quadratischen Gleichung.

Artikel lesen

Sekantennäherungsverfahren

Die regula falsi (das Sekantennäherungsverfahren) gehört zu den Näherungsverfahren zum Bestimmen der Lösungen von Gleichungen, bei denen die Anwendung exakter Verfahren zur Berechnung nicht existieren oder in ihrer Handhabung zu aufwendig sind.
Das gilt z. B. für das Bestimmen der Lösungen von Gleichungen dritten oder höheren Grades mit einer Unbekannten, für Wurzelgleichungen, Exponentialgleichungen, Logarithmengleichungen und trigonometrische Gleichungen. Aber auch die Berechnung krummlinig begrenzter Flächen oder krummflächig begrenzter Körper erfordert meist den Einsatz von Näherungsverfahren.

Artikel lesen

Verhältnisgleichungen

Viele Probleme, bei denen mit drei gegebenen Größen eine vierte berechnet wird, führen auf Verhältnisgleichungen (Proportionen).
Eine Gleichung der Form
a b = c d     (   a ,b ,c ,d ≠ 0   )
heißt Verhältnisgleichung oder Proportion.
Dabei wird der Quotient zweier Größen als Verhältnis bezeichnet. Verhältnisgleichungen haben eine große Bedeutung bei der Prozentrechnung, bei den Strahlensätzen und bei linearen Funktionen der Form y = mx.

Artikel lesen

Nullstellen

Jede Zahl x aus dem Definitionsbereich einer Funktion f, für die
f(x) = 0 gilt, nennt man Nullstelle dieser Funktion.

Artikel lesen

Geometrische Folgen

Eine geometrische Zahlenfolge ist dadurch charakterisiert, dass die Folgenglieder jeweils durch Multiplikation mit dem konstanten Faktor q aus dem vorhergehenden Glied entstehen.
Jedes Folgenglied (außer dem ersten) ist das geometrische Mittel seiner beiden Nachbarglieder.

Artikel lesen

Dichte von Stoffen

Die Dichte gibt an, welche Masse ein Kubikzentimeter Volumen eines Stoffes hat.

Formelzeichen: ρ
Einheiten:ein Gramm je Kubikzentimeter ( 1 g c m 3 )
 ein Kilogramm je Kubikmeter ( 1 k g m 3 )
 ein Gramm je Liter ( g l )

Die Dichte ist eine für jeden Stoff charakteristische Stoffkonstante. Sie ist abhängig von der Temperatur und vom Druck.

Artikel lesen

Gerade und ungerade Funktionen

Eine Funktion f heißt gerade Funktion, wenn mit x auch (–x) zu ihrem Definitionsbereich gehört und für alle Argumente x gilt:
  f ( −   x ) = f ( x )
Eine Funktion f heißt ungerade Funktion, wenn mit x auch (–-x) zu ihrem Definitionsbereich gehört und für alle Argumente x gilt:
  f ( −   x ) = −   f ( x )

Artikel lesen

Halbwertszeit


Eine wichtige Größe in der chemischen Kinetik ist die Halbwertszeit. Diese gibt an, nach welcher Zeit sich die Anfangskonzentration eines Ausgangsstoffes genau um die Hälfte verringert hat.

Artikel lesen

Betragsfunktion

Die Betragsfunktion ist eine stückweise erklärte stetige Funktion. Sie ist folgendermaßen definiert:
  f   ( x ) = {     x   für  x ≥ 0 − x   für  x < 0

Artikel lesen

Bogenmaß

Zwischen der Größe des Winkels α eines Kreissektors und der Länge b des zugehörigen Bogens besteht eine umkehrbar eindeutige Beziehung. Bezeichnet u die Länge des Umfangs des gesamten Kreises (mit dem Radius r), so gilt:
  b   :   u = α   :   360 °
Mit u = 2 π ⋅ r folgt hieraus:
  b   :   2 π r = α   :   360 °
bzw.
  b = π 180 ° r ⋅ α
Bildet man nun das Verhältnis b r , so ist dies wegen b r = π 180 ° ⋅ α nur von der Größe des Winkels α abhängig. Zu jedem Winkel α , dessen Größe in Gradmaß angegeben ist, gehört also ein eindeutig bestimmter Wert des Verhältnisses b r , der sich mittels π 180 ° ⋅ α berechnen lässt.

Artikel lesen

Logarithmengleichungen

Logarithmengleichungen nennt man solche Gleichungen, in denen die Variable im Argument des Logarithmus auftritt.

Artikel lesen

Algebraische Gleichungen

In einer algebraischen Gleichung werden mit der Variablen nur algebraische Rechenoperationen vorgenommen, d. h., die Variablen werden addiert, subtrahiert, multipliziert, dividiert bzw. potenziert oder radiziert.
Jede algebraische Gleichung kann in der folgenden allgemeinen Form dargestellt werden:
  a n x n + a n − 1 x n − 1 + ... + a 2 x 2 + a 1 x + a 0 = 0

Artikel lesen

Trigonometrische Gleichungen

Trigonometrische Gleichungen (goniometrische Gleichungen) sind solche Gleichungen, in denen die Unbekannte im Argument von Winkelfunktionen vorkommt.

Artikel lesen

Exponentialfunktionen

Funktionen mit Gleichungen der Form
  y = f ( x ) = a x   ( a ∈ ℝ ;       a > 0 ;       a ≠ 1 )
heißen Exponentialfunktionen. Ihr Definitionsbereich ist die Menge ℝ der reellen Zahlen.

Artikel lesen

Folgen, Allgemeines

Eine Funktion, deren Defitionsbereich die Menge der natürlichen Zahlen (oder eine Teilmenge davon) ist und die eine Teilmenge der reellen Zahlen als Wertebereich besitzt, wird (reelle) Zahlenfolge genannt.
Unter der n-ten Partialsumme einer s n einer Zahlenfolge ( a n ) versteht man die Summe der Folgenglieder von a 1 bis a n .

Artikel lesen

Arithmetische Folgen

Eine arithmetische Zahlenfolge ist dadurch charakterisiert, dass aufeinanderfolgende Glieder alle den gleichen Abstand d haben. Jedes Folgeglied (außer dem ersten) ist das arithmetische Mittel seiner benachbarten Glieder.

Artikel lesen

Quadratische Funktionen

Eine Funktion mit einer Gleichung der Form

  y = f ( x ) = a x 2 + b x + c   ( mit  a ≠ 0,       x ∈ ℝ )

oder einer Gleichung, die durch äquivalentes Umformen in diese Form überführt werden kann, heißt quadratische Funktion.
Dabei nennt man a x 2 das quadratische Glied, bx das lineare Glied und c das absolute Glied der Funktionsgleichung.
Der Graph einer quadratischen Funktion ist eine Parabel.

Artikel lesen

Säure-Base-Titration

Eine einfache und trotzdem sehr zuverlässige Methode der quantitativen Analyse ist die Titration, die schon sehr lange zur Bestimmung der Konzentration wässriger Lösungen angewendet wird. Das Grundprinzip besteht darin, zu einer Analysenlösung unbekannter Konzentration eine Maßlösung eines Stoffes bekannter Konzentration zu geben. Wenn beide Stoffe vollständig miteinander reagieren, kann aus dem Volumen der Maßlösung die Konzentration der Analysenlösung berechnet werden. Dieses Prinzip kann sowohl bei Säure-Base-Reaktionen als bei auf anderen Reaktionstypen zur quantitativen Analyse genutzt werden.
Säure-Base-Titrationen kommen vielfältig zum Einsatz: für die Überwachung von Umweltprozessen, wie die Analyse der Wasser- und Bodenqualität, aber auch bei der Herstellung von Lebens- und Arzneimitteln.

Seitennummerierung

  • Previous Page
  • Seite 1
  • Aktuelle Seite 2
  • Seite 3
  • Seite 4
  • Seite 5
  • Seite 6
  • Next Page

313 Suchergebnisse

Fächer
  • Biologie (2)
  • Chemie (43)
  • Mathematik (129)
  • Physik (139)
Klassen
  • 5. Klasse (132)
  • 6. Klasse (132)
  • 7. Klasse (132)
  • 8. Klasse (132)
  • 9. Klasse (132)
  • 10. Klasse (132)
  • Oberstufe/Abitur (181)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2026