Direkt zum Inhalt

111 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Funktionen, y = mx

Jeder direkt proportionale Zusammenhang zwischen zwei Größen y und x kann durch eine spezielle lineare Funktion mit der Gleichung
  y = ( x ) = m x + n   ( m ≠ 0 )
beschrieben werden.
Definitionsbereich und Wertebereich (Wertevorrat) von f ist die Menge der reellen Zahlen ℝ . Der Graph von f ist eine Gerade, die durch den Koordinatenursprung verläuft

Artikel lesen

Druck

Der Druck gibt an, mit welcher Kraft ein Körper auf eine Fläche von einem Quadratmeter wirkt.

Im Alltag wird der Begriff Druck u.a. im Zusammenhang mit dem Reifendruck, dem Druck in Wasserleitungen oder dem Luftdruck verwendet. Dabei benutzt man den Begriff Druck häufig, um Wirkungen von Kräften zu beschreiben. Die Größen Kraft und Druck müssen aber deutlich voneinander unterschieden werden. Während die Kraft angibt, wie stark ein Körper auf einen anderen einwirkt, beschreibt der Druck die Wirkung einer Kraft auf eine bestimmte Fläche. Allgemein gilt:

Artikel lesen

Funktionen, y = mx + n

Eine Funktion f mit einer Gleichung der Form
  y = f ( x ) = m x + n   ( m ,   n ∈ ℝ )
oder einer Gleichung, die durch äquivalentes Umformen in diese Form überführt werden kann, heißt lineare Funktion.
Für lineare Funktionen ist der Definitionsbereich im Allgemeinen die Menge der reellen Zahlen (so nicht das mathematische oder das entsprechenden Anwendungsproblem einen Einschränkung verlangt), was dann auch für den Wertebereich ( m ,   n ≠ 0 ) gilt. Die Zahlen m und n sind Parameter.

Artikel lesen

Maximilian Guldberg

* 11.08.1836 in Christiania
† 14.01.1902 in Christiania (dem heutigen Oslo, Norwegen)

CATO MAXIMILIAN GULDBERG war ein norwegischer Mathematiker. Er entwickelte zusammen mit dem Chemiker PETER WAAGE zwischen 1864 und 1867 auf der Grundlage physikochemischer Untersuchungen von Gasen und Lösungen das Massenwirkungsgesetz. Dieses fundamentale chemische Gesetz blieb lange Zeit unbeachtet, bis es 1877 von OSTWALD bestätigt wurde. Der geniale, sehr zurückgezogen lebende Theoretiker leitete ebenfalls weitgehend unbeachtet bereits 1867 die ideale Gasgleichung ab.

Artikel lesen

Massenwirkungsgesetz

Bei reversiblen chemischen Reaktionssystemen stellt sich ein Gleichgewicht zwischen Hin- und Rückreaktion ein. Solche Reaktionen verlaufen nicht vollständig, d. h. die Konzentration der Ausgangsstoffe sinkt nicht auf null. In Abhängigkeit von den Reaktionsbedingungen (Druck, Temperatur) werden konstante Gleichgewichtskonzentrationen der an der Reaktion beteiligten Stoffe erreicht. Mit Hilfe des Massenwirkungsgesetzes können diese in Form der Gleichgewichtskonstanten berechnet werden.

Artikel lesen

Neutralisationsreaktionen

Neutralisationsreaktionen sind spezielle Reaktionen zwischen Säuren und Basen, bei denen äquivalente Stoffmengen der Basen und Säuren miteinander reagieren. Bei dieser exothermen Reaktion heben sich die Wirkung der Säure und Base gegenseitig auf und man erhält in der Regel eine neutrale Lösung mit dem pH-Wert von 7. Dieser Fakt wird in der Technik, in der Medizin bzw. auch in der Landwirtschaft häufig bewusst ausgenutzt, spielt aber auch in der oft in der Natur eine Rolle.

Artikel lesen

Peter Waage

* 29.06.1833 in Flekkefjord
† 13.01.1900 in Christiania

PETER WAAGE war ein norwegischer Chemiker. Er entwickelte zusammen mit dem Mathematiker CATO MAXIMILIAN GULDBERG zwischen 1864 und 1867 auf der Grundlage physikochemischer Untersuchungen von Gasen und Lösungen das Massenwirkungsgesetz. Dieses fundamentale chemische Gesetz blieb lange Zeit unbeachtet, bis es 1877 von OSTWALD bestätigt wurde.
WAAGE hat nichts mit dem gleichnamigen seit dem Altertum bekannten Messgerät zur Bestimmung der Masse zu tun.

Artikel lesen

relative Atommasse

Die relative Atommasse gibt an, wievielmal größer die Masse eines Atoms als die atomare Masseneinheit ist.

Artikel lesen

Erhaltung der Masse

Das Gesetz von der Erhaltung der Masse besagt:

Bei allen chemischen Reaktionen bleibt die Gesamtmasse der an der Reaktion beteiligten Stoffe erhalten. Die Gesamtmasse der Ausgangsstoffe ist gleich der Gesamtmasse der Reaktionsprodukte.

Artikel lesen

Gasgesetze

Der Zusammenhang zwischen den Zustandsgrößen Druck, Volumen und Temperatur eines idealen Gases wird durch die Gasgesetze von ROBERT BOYLE und EDME MARIOTTE sowie JOSEPH LOUISE GAY-LUSSAC und AMONTONS beschrieben. Fasst man diese Gesetzmäßigkeiten zusammen, dann erhält man eine Zustandsgleichung des idealen Gases. Diese auch als universelle Gasgleichung bezeichnete Beziehung kann für stöchiometrische Berechnungen genutzt werden, da sich viele reale Gase annähernd wie ideale Gase verhalten.

Artikel lesen

Molare Masse

Die molare Masse eines Stoffes gibt an, welche Masse die Stoffmenge von 1 mol (etwa 6 ⋅ 10 23 Teilchen) dieses Stoffes besitzt.

Formelzeichen:M
Einheit:Gramm je Mol ( g mol ; g/mol)
Artikel lesen

Mischungsrechnen

Das Mischen von Lösungen unterschiedlicher Konzentrationen oder das Verdünnen hoch konzentrierter Lösungen sind alltägliche Aufgaben z. B. in der chemischen Analytik oder in der chemischen Industrie. Dabei muss man schnell berechnen können, welche Konzentrationen die erhaltene Lösung besitzt oder welche Ausgangslösungen eingesetzt werden müssen, um zum gewünschten Ergebnis zu gelangen.

Artikel lesen

Parallelogramm

Ein Viereck, dessen gegenüberliegende Seiten parallel sind, heißt Parallelogramm. Die gegenüberliegenden Seiten sind demzufolge gleich lang. Die Diagonalen in einem Parallelogramm halbieren einander. Die gegenüberliegenden Winkel sind gleich groß.

Artikel lesen

Satz des Pythagoras

Die Satzgruppe des Pythagoras, voran der Satz des Pythagoras, zählt wegen ihrer großen Bedeutung für Berechnungen und Beweisführungen zu den berühmtesten der Planimetrie. Seine Endeckung wird meist PYTHAGORAS VON SAMOS (um 580 bis 500 v. Chr.) zugeschrieben, was in dieser Absolutheit sicher nicht richtig ist.

Artikel lesen

Stöchiometrisches Rechnen

Die Stöchiometrie ist die Lehre von der Berechnung der Zusammensetzung chemischer Verbindungen und Stoffgemische sowie der Massen-, Volumen- und Ladungsverhältnisse bei chemischen Reaktionen. Energetische Veränderungen werden dabei nicht betrachtet. Bei stöchiometrischen Berechnungen werden bekannte chemische und auch physikalische Gesetze genutzt.

Artikel lesen

Quadrat, allgemein

Ein Viereck, bei dem je zwei benachbarte Seiten zueinander senkrecht und gleich lang sind, heißt Quadrat.
Gleichwertig sind auch folgende Aussagen:

  • Ein Quadrat ist ein Rechteck mit gleich langen Seiten.
  • Ein Quadrat ist eine Raute (ein Rhombus) mit rechten Winkeln.

Das Quadrat ist ein regelmäßiges Viereck.

Artikel lesen

Kosinussatz

Der Kosinussatz gehört neben dem Sinussatz zu den wichtigsten Sätzen der Trigonometrie. Der Kosinussatz drückt eine Beziehung zwischen den drei Seiten und einem Winkel im Dreieck aus.
Man kann aus zwei Seiten und dem von ihnen eingeschlossenen Winkel die dritte Seite berechnen oder aus drei Seiten einen Winkel.

Artikel lesen

Berechnungen am Kreis

Um den Umfang u eines Kreises mit dem Durchmesser d zu bestimmen, kann man von den Umfängen eines einbeschriebenen und eines umbeschriebenen Vielecks ausgehen, z. B. eines regelmäßigen Sechsecks. Für den Umfang des Kreises gilt:
u = π ⋅ d = π ⋅ 2 r

Artikel lesen

Dreiecksarten

Ein Dreieck ist ein geschlossener Streckenzug aus drei Strecken. Die drei Strecken sind die Seiten des Dreiecks. Je zwei Seiten haben einen Eckpunkt gemeinsam.

Artikel lesen

Quadratische Funktionen, Nullstellen

Wir betrachten zunächst quadratische Funktionen der Form y = f ( x ) = a x 2 + b x + c .
Man erhält y = f ( x ) = x 2 + b x + c bzw. durch Umbenennung
y = f ( x ) = x 2 + p x + q ,     p ,   q ∈ ℝ .
Um den Zusammenhang zwischen den reellen Zahlen p, q und den Nullstellen der jeweiligen quadratischen Funktionen bzw. den Schnittpunkten ihrer Graphen mit der x-Achse zu erkennen, ist es zweckmäßig, eine Fallunterscheidung durchzuführen.

Artikel lesen

Winkelfunktionen am rechtwinkligen Dreieck

Bei allen zueinander ähnlichen rechtwinkligen Dreiecken sind die Quotienten aus den Längen von je zwei einander entsprechenden Seiten gleich.
Für die nebenstehend bzw. in Bild 1 dargestellten Dreiecke A 1   B 1   C 1 ,       A 1   B 2   C 2       und       A 1   B 3   C 3 , die einander ähnlich sind, gilt nach den Ähnlichkeitssätzen:
  B 1 C 1 ¯ A 1 B 1 ¯ = B 2 C 2 ¯ A 1 B 2 ¯ = B 3 C 3 ¯ A 1 B 3 ¯ A 1 C 1 ¯ A 1 B 1 ¯ = A 1 C 2 ¯ A 1 B 2 ¯ = A 1 C 3 ¯ A 1 B 3 ¯ B 1 C 1 ¯ A 1 C 1 ¯ = B 2 C 2 ¯ A 1 C 2 ¯ = B 3 C 3 ¯ A 1 C 3 ¯
Solche für zueinander ähnliche rechtwinklige Dreiecke übereinstimmenden Quotienten (Verhältnisse) werden mit Bezug auf einen der beiden nicht rechten Winkel als der Sinus, der Kosinus, der Tangens bzw. der Kotangens dieses Winkels bezeichnet.

Artikel lesen

Raute

Ein Viereck mit vier gleich langen Seiten heißt Raute (Rhombus). Neben den Eigenschaften eines Parallelogramms (Parallelität der gegenüberliegenden Seiten) besitzt die Raute folgende Merkmale:
1. Die Seiten sind gleich lang.
2. Die Diagonalen stehen senkrecht aufeinander.
3. Die Diagonalen halbieren die Innenwinkel.

Artikel lesen

Rechteck


Ein Parallelogramm mit einem rechten Winkel ist ein Rechteck.
Für das Rechteck gilt demzufolge:

  • Die gegenüberliegenden Seiten sind gleich lang und zueinander parallel.
  • Benachbarte Seiten sind rechtwinklig zueinander.
  • Alle vier Innenwinkel sind gleich groß. Sie betragen 90°.
  • Die Diagonalen sind gleich lang und halbieren einander.
Artikel lesen

Trapez

Ein Viereck mit einem Paar paralleler Seiten heißt Trapez.
Die parallelen Seiten sind die Grundseiten, die beiden anderen Seiten die Schenkel des Trapezes.
Der Abstand der Grundseiten ist die Höhe h des Trapezes.
Die Verbindungsstrecke der Mitten der Schenkel heißt Mittellinie m.
Sind in einem Trapez die Schenkel gleich lang, so heißt es gleichschenklig. Hat das Trapez einen rechten Innenwinkel, so heißt es rechtwinkliges Trapez.

Artikel lesen

Cato Maximilian Guldberg

* 11.08.1836 in Christiania
† 14.01.1902 in Christiania (dem heutigen Oslo, Norwegen)

CATO MAXIMILIAN GULDBERG war ein norwegischer Mathematiker. Er entwickelte zusammen mit dem Chemiker PETER WAAGE zwischen 1864 und 1867 auf der Grundlage physikochemischer Untersuchungen von Gasen und Lösungen das Massenwirkungsgesetz. Dieses fundamentale chemische Gesetz blieb lange Zeit unbeachtet, bis es 1877 von OSTWALD bestätigt wurde. Der geniale, sehr zurückgezogen lebende Theoretiker leitete ebenfalls weitgehend unbeachtet bereits 1867 die ideale Gasgleichung ab.

Seitennummerierung

  • Previous Page
  • Seite 1
  • Seite 2
  • Aktuelle Seite 3
  • Seite 4
  • Seite 5
  • Next Page

111 Suchergebnisse

Fächer
  • Biologie (1)
  • Chemie (23)
  • Mathematik (86)
  • Physik (1)
Klassen
  • 5. Klasse (106)
  • 6. Klasse (106)
  • 7. Klasse (106)
  • 8. Klasse (106)
  • 9. Klasse (106)
  • 10. Klasse (106)
  • Oberstufe/Abitur (5)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025