Direkt zum Inhalt

111 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Regelmäßige Vielecke

Alle regelmäßigen Vielecke (n-Ecke) besitzen gleich lange Seiten und gleich große Innenwinkel und sind damit konvex.
Die Winkelsumme im n-Eck beträgt (n – 2) · 180°.
Im regelmäßigen n-Eck ist diese Winkelsumme gleichmäßig auf alle n Innenwinkel des n-Ecks verteilt.

Artikel lesen

Peter Waage

* 29.06.1833 in Flekkefjord
† 13.01.1900 in Christiania

PETER WAAGE war ein norwegischer Chemiker. Er entwickelte zusammen mit dem Mathematiker CATO MAXIMILIAN GULDBERG zwischen 1864 und 1867 auf der Grundlage physikochemischer Untersuchungen von Gasen und Lösungen das Massenwirkungsgesetz. Dieses fundamentale chemische Gesetz blieb lange Zeit unbeachtet, bis es 1877 von OSTWALD bestätigt wurde.
WAAGE hat nichts mit dem gleichnamigen seit dem Altertum bekannten Messgerät zur Bestimmung der Masse zu tun.

Artikel lesen

Sinussatz

Der Sinussatz verbindet gegenüberliegende Größen (Seiten und Winkel) im allgemeinen Dreieck. Sind zwei einander gegenüberliegende Größen gegeben, so kann zu einer dritten die gegenüberliegende Größe berechnet werden.

Artikel lesen

Strahlensätze

Eine Figur aus zwei Strahlen mit gemeinsamem Anfangspunkt Z, die von zwei zueinander parallelen Geraden geschnitten wird, heißt Strahlensatzfigur mit dem Zentrum Z.

Artikel lesen

Kreiskegel

Werden alle Punkte eines Kreises mit einem Punkt S außerhalb der Kreisebene verbunden, so schließen diese Strecken gemeinsam mit dem Kreis einen Körper ein, der Kreiskegel genannt wird. Er hat einen Kreis als ebene Grundfläche und eine gekrümmte Mantelfläche.

Artikel lesen

Kreiszylinder

Einen Körper mit zwei zueinander kongruenten und parallelen Kreisen als Grund- und Deckfläche nennt man Kreiszylinder. Liegen die Mittelpunkte der Kreisflächen des Zylinders senkrecht übereinander, so handelt es sich um einen geraden Kreiszylinder. Man kann sich einen geraden Kreiszylinder auch durch Rotation eines Rechtecks um eine seiner Seiten entstanden vorstellen.

Artikel lesen

Kugel

Die Kugel ist die Menge aller Punkte des Raums, die von einem festen Punkt M, dem Mittelpunkt der Kugel, den gleichen Abstand r haben. Der Abstand heißt Radius der Kugel.

Artikel lesen

Kugelteile

Wird eine Kugel durch eine Ebene oder mehrere Ebenen geschnitten, so entstehen verschiedene Schnittfiguren.
Beim Schnitt einer Kugel durch eine Ebene entstehen zwei Kugelabschnitte (Kugelsegmente). Verläuft diese Schnittebene genau durch den Kugelmittelpunkt, entstehen zwei Halbkugeln.

Artikel lesen

Zinssätze, Berechnen

Wenn man einen Zinsbetrag und das entsprechende Kapital kennt, kann man den zugehörigen Zinssatz berechnen, indem man die erhaltenen Zinsen durch das Kapital dividiert und dann in Prozent angibt.

Artikel lesen

Zinsstaffel

Bei der kaufmännischen Zinsrechnung, insbesondere bei Abrechnungen zwischen Banken und Kunden, wird die Kontokorrentrechnung (Rechnung mit Soll und Haben) verwendet. Die Kontenseiten werden dabei aus der Sicht der Bank bezeichnet. Habenposten sind also für den Bankkunden Guthaben, Gutschriften, Einzahlungen, Überweisungseingänge usw. Sollposten sind für den Bankkunden Verbindlichkeiten, Abhebungen, Überweisungsausgänge, Abbuchungen eigener Schecks usw.

Artikel lesen

Zinszahlen, Zinsteiler

Bei der kaufmännischen Zinsrechnung sind vorwiegend Tageszinsen zu berechnen, wobei die Zinssätze im Allgemeinen p. a. (pro Jahr) angegeben werden.
Die Formel zum Berechnen der Tageszinsen wird dabei vereinfacht.

Artikel lesen

Winkelfunktionen, Graphen und Eigenschaften

Graphen von Winkelfunktionen kann man auf die bekannte Weise unter Verwendung einer Wertetabelle zeichnen.
Es ist allerdings auch möglich, ausgehend von der Definition dieser Funktionen am Einheitskreis die zu einem Winkel als Abszisse eines Graphenpunktes gehörende Ordinate sofort aus der Zeichnung zu entnehmen. Gestützt auf diesen Weg der Konstruktion der Funktionsgraphen lassen sich einige wichtige Eigenschaften der Winkelfunktionen ermitteln.

Artikel lesen

Allgemeine Wurzelfunktionen

Funktionen mit Gleichungen der Form   y = f ( x ) = x m n   ( x ≥ 0 ;       m ,   n ∈ ℕ ;     m ≥ 1 ;     n ≥ 2 )
heißen Wurzelfunktionen.
Wurzelfunktionen sind spezielle Potenzfunktionen, wenn man als Exponenten nicht nur ganze Zahlen, sondern auch gebrochene Zahlen zulässt:
  x m n = x m n   ( x ≥ 0 ;     m ,   n ∈ ℕ ;     m ≥ 1 ;     n ≥ 2 )
Als Wurzelfunktionen bezeichnet man im weiteren Sinne ebenfalls alle Funktionen, in deren Funktionsterm das Argument x als Bestandteil eines Wurzelradikanden auftritt, z. B. also:
  f ( x ) = x − 2 4 ,     g ( x ) = 5 4 − x 3

Artikel lesen

Spezielle Wurzelfunktion

Besonders häufig treten Funktionen mit Gleichungen der Form y = f ( x ) = x 2 = x auf. Die Funktion f ( x ) = x ist die Umkehrfunktion (inverse Funktion) zu y = g ( x ) = x 2 , jedoch nur für x ≥ 0 , da die Gleichung g ( x ) = x 2 keine umkehrbar eindeutige (eineindeutige) Zuordnung beschreibt.

Artikel lesen

Neutralisationsreaktionen in Natur und Technik

Neutralisationsreaktionen sind spezielle Reaktionen zwischen Säuren und Basen, bei denen äquivalente Stoffmengen der Basen und Säuren miteinander reagieren. Bei dieser exothermen Reaktion heben sich die Wirkung der Säure und Base gegenseitig auf und man erhält in der Regel eine neutrale Lösung mit dem pH-Wert von 7. Dieser Fakt wird in der Technik, in der Medizin bzw. auch in der Landwirtschaft häufig bewusst ausgenutzt, spielt aber auch in der oft in der Natur eine Rolle.

Artikel lesen

Dualsystem

Das Dualsystem verwendet als Basis die Zahl 2. Grundziffern sind die 0 und die 1.
Das Dualsystem wird auch als Binärsystem bezeichnet.

Artikel lesen

Schriftliche Division

Beim Verfahren der schriftlichen Division nutzt man das Distributivgesetz.
Die folgenden Beispiele sollen das Verfahren verdeutlichen.

Artikel lesen

Computeralgebrasysteme

Beim Einsatz des Computeralgeb rasystems “Mathcad 8” können Zahlen und Variablen beliebig verändert werden. Das CAS liefert sofort die neue Lösung bzw. die neue grafische Darstellung.

Artikel lesen

Binomialkoeffizienten

Beim rechnerischen Lösen kombinatorischer Probleme bzw. beim Berechnen von Wahrscheinlichkeiten werden als Binomialkoeffizienten bezeichnete Terme verwendet. Es sind die Koeffizienten, die beim Entwickeln der n-ten Potenz eines Binoms (a + b) auftreten. Sie können aus dem sogenannten pascalschen Zahlendreieck gewonnen werden. Nachteil dabei ist, dass bei diesem Vorgehen rekursiv verfahren wird, d. h., zur Ermittlung der Koeffizienten von ( a + b ) n müssen die von ( a + b ) n − 1 bekannt sein.
Hier wird deshalb eine explizite Definition der Binomialkoeffizienten gegeben, einige Rechenregeln werden plausibel gemacht, und der binomische Satz wird allgemein formuliert.

Artikel lesen

Binomialverteilung

Die Verteilung der Anzahl k der Erfolge in einer Bernoulli-Kette der Länge n und der Erfolgswahrscheinlichkeit p wird Binomialverteilung mit den Parametern n und p genannt. Es gilt:

  P ( X = k ) = ( n k ) ⋅ p k ⋅ ( 1 − p ) n − k   ( k = 0 ;     1     ...     n )

Tabellen der Binomialverteilung für bestimmte Parameterwerte von n und p sind in vielen Tafelwerken enthalten.
Binomialverteilungen lassen sich mithilfe des sogenannten Galton-Bretts veranschaulichen.

Artikel lesen

Permutationen

Unter einer Permutation versteht man eine Anordnung, bei der alle n Elemente verwendet (d. h. auf n Plätze verteilt) werden. Man unterscheidet Permutationen ohne und mit Wiederholung (der Elemente).

Artikel lesen

Pseudozufallszahlen

Die Simulation zufälliger Vorgänge aus der Praxis ist oft sehr mühsam und zeitaufwendig. Das gilt besonders auch für das Erzeugen von Zufallszahlen und das Arbeiten mit diesen Zahlen (ggf. unter Verwendung entsprechender Tabellen).
Heute ist es möglich, von Computern erzeugte Zufallszahlen, sogenannte Pseudozufallszahlen, zu nutzen. Grundlage für deren Erzeugung ist ein Algorithmus, der Ziffernfolgen liefert, die annähernd dieselben Eigenschaften haben wie echte Zufallszahlen.

Artikel lesen

Glockenförmige Häufigkeitsverteilung

Grafische Darstellungen von Häufigkeitsverteilungen sind oft symmetrisch und lassen für den Fall, dass die Anzahl der Beobachtungsergebnisse nicht zu gering ist, eine annähernd glockenförmige Gestalt erkennen. Lage und Form der „Glocke“ werden durch den Mittelwert x ¯ bzw. die Standardabweichung s bestimmt.

Artikel lesen

Kombinationen

Zu den typischen kombinatorischen Fragestellungen gehören solche, bei denen Zusammenstellungen von k aus n Elementen betrachtet werden, also eine Auswahl vorgenommen wird.
Werden dabei alle möglichen Reihenfolgen der Elemente betrachtet und unterschieden, so spricht man von Variationen, wird die Reihenfolge nicht berücksichtigt von Kombinationen.
(Der Begriff Kombination wird mitunter auch als Oberbegriff für Variation und Kombination verwendet.)

Artikel lesen

Dezimalbrüche, Multiplikation

Sollen Dezimalbrüche multipliziert werden, lässt man das Komma zunächst unberücksichtigt und multipliziert die so entstehenden natürlichen Zahlen. Danach ist zu entscheiden, an welche Stelle des Resultates das Komma zu setzen ist.
Dabei gilt:
Hat der erste Faktor n Stellen nach dem Komma und der zweite Faktor m Stellen nach dem Komma, so hat das Produkt m + n Stellen nach dem Komma. Gegebenenfalls müssen Nullen ergänzt werden.

Seitennummerierung

  • Previous Page
  • Seite 1
  • Seite 2
  • Seite 3
  • Aktuelle Seite 4
  • Seite 5
  • Next Page

111 Suchergebnisse

Fächer
  • Biologie (1)
  • Chemie (23)
  • Mathematik (86)
  • Physik (1)
Klassen
  • 5. Klasse (106)
  • 6. Klasse (106)
  • 7. Klasse (106)
  • 8. Klasse (106)
  • 9. Klasse (106)
  • 10. Klasse (106)
  • Oberstufe/Abitur (5)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025