Direkt zum Inhalt

455 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Intervalle

Eine Menge reeller Zahlen nennt man Intervall, wenn sie sich auf der Zahlengeraden als Strecke darstellen lässt.
Gehören die Randwerte mit zum Intervall, spricht man von einem abgeschlossenen Intervall, gehören sie nicht zur dargestellten Menge, spricht man von einem offenen Intervall.

Artikel lesen

Intervallschachtelung

Beim Bestimmen der Lösung einer Gleichung mittels Intervallschachtelung wird das Intervall so verkleinert, dass die Nullstelle der entsprechenden Funktion in dem verkleinerten Intervall liegt. Dieses Vorgehen wird wiederholt, bis das Intervall so klein ist, dass ein Wert aus dem Intervall als hinreichend genaue Näherung für die Nullstelle betrachtet werden kann.

Artikel lesen

Iterationsverfahren

Unter Iteration versteht man ein Verfahren zur schrittweisen Annäherung an die Lösung einer Gleichung unter Anwendung eines sich wiederholenden Rechengangs. Das bedeutet, (wenn es möglich ist) aus einer Näherungslösung durch Anwenden eines Algorithmus zu einer besseren Näherungslösung zu kommen und die Lösung beliebig gut an die exakte Lösung heranzuführen. Man sagt dann, dass die Iteration konvergiert.

Artikel lesen

Kubische Gleichungen, grafisches Lösen

Eine Näherungslösung einer kubischen Gleichung kann man dadurch erhalten, indem man die Gleichung durch Substitution in die reduzierte Form x 3 + p x + q = 0 bringt und wie folgt in zwei Funktionen zerlegt:
  y = f 1   ( x ) = x 3   y = f 2   ( x ) = −     p x − q
Die Graphen dieser Funktionen werden gezeichnet, die Abszisse ihres Schnittpunktes ist eine Näherung für eine reelle Lösung der Gleichung.

Artikel lesen

Lineare Gleichungssysteme, Grafisches Lösen

Ein lineares Gleichungssystem mit den beiden Variablen x und y besteht aus zwei linearen Gleichungen (I und II) mit jeweils den Variablen x und y.
I     a 1 x + b 1 y = c 1     a 1 ,b 1 ,c 1 ∈ ℚ II       a 2 x + b 2 y = c 2       a 2 ,b 2 ,c 2 ∈ ℚ
Zur Lösungsmenge eines linearen Gleichungssystems gehören die Zahlenpaare, die sowohl zur Lösungsmenge der Gleichung I als auch zur Lösungsmenge der Gleichung II gehören.

Artikel lesen

Lineare Ungleichungen, mit einer Variablen

Zwei Terme, zwischen denen eines der Zeichen > ,    < ,    ≤ ,    ≥  oder  ≠ steht, bilden eine Ungleichung.
Ungleichungen der Form ax + b < 0 ( a ≠ 0 ) oder solche, die durch äquivalentes Umformen in diese Form überführt werden können, heißen lineare Ungleichungen mit einer Variablen.

Artikel lesen

Äquivalenzumformungen

Gleichungen bzw. Ungleichungen mit demselben Grundbereich, die die gleiche Lösungsmenge haben, heißen zueinander äquivalent.

Die Lösungsmenge einer Gleichung ändert sich nicht, wenn

  • die Seiten einer Gleichung vertauscht werden,
  • auf beiden Seiten einer Gleichung derselbe Term addiert oder subtrahiert wird,
  • beide Seiten einer Gleichung mit demselben Term multipliziert werden,
  • beide Seiten einer Gleichung durch denselben Term dividiert werden.

Beim Multiplizieren bzw. Dividieren mit einem bzw. durch einen Term darf dieser für keine Zahl aus der Grundmenge den Wert null annehmen.

Artikel lesen

Archimedes

ARCHIMEDES von Syrakus, griechischer Mathematiker, Physiker und Erfinder
* um 287 v. Chr. Syrakus
† 212 v. Chr. Syrakus

ARCHIMEDES gewann viele seiner Ergebnisse auf experimentellem Wege und wandte sie auch an. Auf dem Gebiet der Mathematik beschäftigte er sich insbesondere mit geometrischen Inhalten.

Artikel lesen

Betragsgleichungen

Gleichungen, bei denen von der Variablen direkt oder indirekt der absolute Betrag angegeben ist, sind weder der Gruppe der algebraischen Gleichungen noch der Gruppe der transzendenten Gleichungen zuzuordnen.
Beim Lösen von Gleichungen mit Beträgen sind Fallunterscheidungen vornehmen.
Dies wird für lineare und quadratische Gleichungen demonstriert.

Artikel lesen

Binome

Zweigliedrige Ausdrücke, sogenannte Binome, nehmen wegen ihres häufigen Auftretens in der Mathematik einen besonderen Platz ein.
Dabei sind Potenzen von Binomen ( a + b ) n von großem Interesse.
Wenn a, b und n natürliche Zahlen sind, gilt folgende Beziehung, die auch binomischer Satz genannt wird:
( a + b ) n = ∑ k = 0 n ( n k ) ⋅ a n − k ⋅ b k

Artikel lesen

Rechnen mit dem Rechenstab

Der logarithmische Rechenstab wird vornehmlich zum Multiplizieren, Dividieren, Potenzieren, Radizieren und zum Rechnen mit Winkelfunktionswerten verwendet. Durch Anwenden der Logarithmengesetze werden die Rechenoperationen auf die Addition bzw. Subtraktion von Strecken zurückgeführt. Im Folgenden werden Beispiele für die Multiplikation und für die Division dargestellt.

Artikel lesen

Bruchgleichungen, Lösen

Ein Term wird Bruchterm genannt, wenn sein Nenner eine Variable enthält.
Eine Gleichung bzw. Ungleichung wird Bruchgleichung bzw. Bruchungleichung genannt, wenn sie mindestens einen Bruchterm enthält.

Bruchgleichungen lassen sich folgendermaßen lösen:

  1. Es wird der Hauptnenner der Bruchgleichung z. B. durch
    Primfaktorzerlegung oder durch Faktorisierung bestimmt.
  2. Beide Seiten der Bruchgleichung werden mit dem Hauptnenner multipliziert.
  3. Auf beiden Seiten werden die Brüche gekürzt.
  4. Die neue Gleichung wird mit den bekannten Schritten für
    äquivalentes Umformen gelöst.
  5. Es muss geprüft werden, ob die Lösung der neuen Gleichung auch zur Definitionsmenge der Bruchgleichung gehört.
Artikel lesen

Bruchterme, Rechnen

Ein Term wird Bruchterm genannt, wenn sein Nenner eine (freie) Variable enthält.
Eine Gleichung bzw. Ungleichung wird Bruchgleichung bzw. Bruchungleichung genannt, wenn sie mindestens einen Bruchterm enthält.
Der Definitionsbereich eines Bruchterms mit einer Variablen ist die Menge aller Zahlen, für die der Term nach ihrem Einsetzen in die Variable definiert ist. Der Definitionsbereich einer Bruchgleichung ist entsprechend die Menge aller Zahlen, für die alle Bruchterme der Bruchgleichung definiert sind.
Ein Bruchterm ist genau dann null, wenn der Zähler null und der Nenner nicht null ist.

Artikel lesen

Bruchungleichungen, Lösen

Ungleichungen, die Bruchterme enthalten, werden Bruchungleichungen genannt.
Ein Beispiel für eine Bruchungleichung ist: x + 2 x − 5 > 0
Um alle Lösungen dieser Bruchungleichung zu finden, müssen zwei Fälle unterschieden werden, denn es gibt zwei Möglichkeiten, damit ein Bruch größer als null ist:

  1. Der Zähler und der Nenner sind größer als null.
  2. Der Zähler und der Nenner sind kleiner als null.

Beide Fälle müssen untersucht werden, um alle Lösungen der Bruchungleichung zu finden.

Artikel lesen

Geronimo Cardano

GERONIMO CARDANO (1501 bis 1576), italienischer Mathematiker, Philosoph und Arzt
* 24. September 1501 Pavia
† 21. September 1576 Rom

GERONIMO CARDANO arbeitete auf dem Gebiet der Algebra und beschäftigte sich insbesondere mit dem Lösen kubischer Gleichungen. Die nach ihm benannte Lösungsformel (die cardanische Formel) stammt allerdings vom venezianischen Rechenmeister NICCOLÒ TARTAGLIA.
Von CARDANO stammen auch physikalische Erfindungen wie das Kardangelenk, die Kardanwelle bzw. die kardanische Aufhängung.

Artikel lesen

Diophant

DIOPHANTOS VON ALEXANDRIA (um 250), griechischer (hellenistischer) Mathematiker

DIOPHANT behandelte lineare und quadratische Gleichungen. Bei ihm finden sich erste Ansätze algebraischer Bezeichnungsweisen und Verfahren. Nach ihm benannt sind die sogenannten diophantischen Gleichungen.

Artikel lesen

Diskriminante

Die Lösungsformel für die Normalform der quadratischen Gleichung x 2 + p   x + q = 0 lautet:
x 1;   2 = − p 2 ±   ( p 2 ) 2 −   q
Der Radikand ( p 2 ) 2 − q heißt Diskriminante und wird mit D abgekürzt.
Vom Wert des Radikanden in der Lösungsformel hängt es ab, ob die quadratische Gleichung zwei, eine oder keine reelle Lösung hat.

Artikel lesen

Einsetzungsverfahren

Wenn eine der beiden linearen Gleichungen in die andere Gleichung des linearen Gleichungssystems „eingesetzt“ wird, um die Lösung des Gleichungssystems zu bestimmen, so nennt man dieses Verfahren Einsetzungsverfahren.

Ein lineares Gleichungssystem mit zwei Variablen wird mit dem Einsetzungsverfahren in folgenden Schritten gelöst:

  1. Es wird – falls nötig – eine der beiden linearen Gleichungen nach einer der beiden Variablen umgeformt.
  2. Die umgeformte Gleichung wird für die Variable in die andere Gleichung eingesetzt.
  3. Die so entstandene lineare Gleichung mit nur einer Variablen wird gelöst.
  4. Die erhaltene Lösung wird in eine der beiden Ausgangsgleichungen eingesetzt und die Gleichung gelöst.
Artikel lesen

Exponentialgleichungen, Anwendungen

Eine Reihe von inner- und außermathematischen Anwendungsaufgaben führt aus das Lösen von Exponentialgleichungen.
Als Beispiele werden Aufgaben zum atmosphärischen Luftdruck und zum Entalden eines Kondensators bzw. zur Zinseszinsrechnung angegeben.

Artikel lesen

Exponentialgleichungen, Lösen

Exponentialgleichungen nennt man solche Gleichungen, in denen die Unbekannte im Exponenten auftritt.
Exponentialgleichungen, in der nur Potenzen mit gleicher Basis auftreten oder unterschiedliche Basen auf die gleiche Basis zurückgeführt werden können, sind mithilfe der Anwendung der Potenzgesetze oder durch Logarithmieren lösbar.

Artikel lesen

Neunerprobe

Da für zwei kongruente Zahlen a 1 und a 2 mit a 1 ≡ r 1 mod b und a 2 ≡ r 2 mod b die Beziehung a 1 + a 2 ≡ r 1 + r 2 mod b gilt, ist der Neunerrest einer Summe gleich der Summe der Neunerreste der Summanden. Man braucht also nur die Reste mod 9 zu untersuchen.
Stimmen die Reste nicht überein, so ist die Rechnung mit Sicherheit falsch. Bei übereinstimmenden Resten ist die Richtigkeit des Resultates zwar nicht sicher, aber wahrscheinlich.
Die Neunerprobe kann auch bei der Subtraktion, Multiplikation und Division angewandt werden.

Artikel lesen

Geschichte der Zahl Null

Beim Rechnen in Positionssystemen (Stellenwertsystemen) ist die Ziffer 0 zur Markierung entsprechender Stellen notwendig. Deshalb führten die Inder bereits vor dem 8. Jahrhundert ein entsprechendes Symbol (einen Punkt bzw. einen Kreis) ein. In Europa setzte sich die Verwendung der Null erst etwa 500 Jahre später und zudem sehr langsam durch. Erst in der Zeit der Rechenmeister fand sie allgemeine Verwendung.

Artikel lesen

Oktalsystem

Das Oktalsystem verwendet als Basis die Zahl 8.
Grundziffern sind die Ziffern 0 bis 7.

Artikel lesen

Permanenzprinzip

Der deutsche Mathematiker HERMANN HANKEL formulierte 1867 das Prinzip von der Erhaltung der formalen Rechengesetze. Es besagt, dass bei Erweiterungen eines Zahlenbereiches die Rechengesetze des Ausgangsbereiches nach Möglichkeit auch im erweiterten Bereich gelten sollen. Diese Forderung wird Permanenzprinzip genannt.

Artikel lesen

Positionssysteme

Positionssysteme kommen nur in vier Zivilisationen mit geschriebener Sprache vor: in Mesopotamien, in China, in der Mayakultur Zentralamerikas und im alten Indien.
In einem Positionssystem mit der Basiszahl b wird eine Zahl durch eine Folge von Grundziffern a i dargestellt: Dabei bestimmt die Basiszahl die Anzahl der benötigten Grundziffern. So sind es im Dezimalsystem 10, im Dualsystem 2, im Oktalsystem 8, im Hexadezimalszystem 16 und im Sexagesimalsystem 60 Grundziffern.

Seitennummerierung

  • Previous Page
  • Seite 4
  • Seite 5
  • Aktuelle Seite 6
  • Seite 7
  • Seite 8
  • Seite 9
  • Next Page

455 Suchergebnisse

Fächer
  • Mathematik (455)
Klassen
  • 5. Klasse (455)
  • 6. Klasse (455)
  • 7. Klasse (455)
  • 8. Klasse (455)
  • 9. Klasse (455)
  • 10. Klasse (455)
  • Oberstufe/Abitur (429)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025