Direkt zum Inhalt

139 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Allgemeine Bewegungsgesetze

Bewegungen können auf unterschiedlicher Bahnen in verschiedener Art erfolgen: Sie können geradlinig oder krummlinig verlaufen, können gleichförmig, gleichmäßig beschleunigt oder ungleichmäßig beschleunigt sein. Für alle speziellen Fälle lassen sich die entsprechenden Bewegungsgesetze formulieren.
Man kann die Bewegungsgesetze aber auch so allgemein formulieren, dass fast alle Spezialfälle aus ihnen ableitbar sein. Diese allgemeinen Bewegungsgesetze sind in dem Beitrag dargestellt und erläutert.

Artikel lesen

Mechanische Arbeit

Mechanische Arbeit wird verrichtet, wenn ein Körper bzw. ein System durch eine Kraft bewegt oder verformt wird.

Formelzeichen:W
Einheiten:ein Newtonmeter ( 1 Nm)
ein Joule (1 J)

Die mechanische Arbeit beschreibt einen Prozess; sie ist daher im Unterschied zur Energie eine Prozessgröße. In Abhängigkeit von den gegebenen Bedingungen können die verschiedenen Arbeiten mechanischer Arbeit (Hubarbeit, Beschleunigungsarbeit, Reibungsarbeit, Verformungsarbeit) berechnet oder aus einem Kraft-Weg-Diagramm ermittelt werden.

Artikel lesen

Arten mechanischer Arbeit

Mechanische Arbeit wird verrichtet, wenn ein Körper oder ein System durch eine einwirkende Kraft bewegt oder verformt wird. Dabei unterscheidet man traditionsgemäß je nach dem betreffenden Vorgang zwischen verschiedenen Arten der Arbeit. Wichtige Arten sind

 
  • die Arbeit beim Heben eines Körpers (Hubarbeit),
 
  • die Arbeit beim Beschleunigen eines Körpers (Beschleunigungsarbeit),
 
  • die Arbeit beim Wirken von Reibungskräften (Reibungsarbeit),
 
  • die Arbeit beim Dehnen einer Feder (Federspannarbeit) und
 
  • die Arbeit beim Komprimieren eines Gases (Volumenarbeit).

Häufig wirken bei einem Vorgang auch mehrere Arten von Arbeit.

Artikel lesen

Auftrieb und Auftriebskraft

Befindet sich ein Körper in einer Flüssigkeit oder in einem Gas, so verringert sich scheinbar seine Gewichtskraft. Diese Erscheinung wird als statischer Auftrieb bezeichnet, die der Gewichtskraft entgegen gerichtete Kraft als Auftriebskraft. Für einen Körper, der sich in einer Flüssigkeit oder in einem Gas befindet, gilt:
Die auf einen Körper wirkende Auftriebskraft ist gleich der Gewichtskraft der von ihm verdrängten Flüssigkeits- bzw. Gasmenge (archimedisches Gesetz).
Je nach dem Verhältnis zwischen der nach unten wirkender Gewichtskraft und der nach oben wirkenden Auftriebskraft sinkt, schwebt, steigt oder schwimmt ein Körper.

Artikel lesen

Bahnformen und Energie von Satelliten

Künstliche Satelliten können sich auf sehr unterschiedlichen Bahnen um die Erde oder zu anderen Himmelskörpern hin bewegen. Dabei handelt es sich um kreisförmige, elliptische oder parabelförmige Bahnen, die aber durch Triebwerke oder durch den Einfluss von Himmelskörpern verändert werden können.
Bei interplanetaren Flugbahnen sind die HOHMANN-Bahnen von besonderem Interesse.
Bei Swing-by-Manövern nutzt man das Gravitationsfeld und die Eigenbewegung von Himmelskörpern dazu, die Bahn und die Bewegung von Satelliten zu beeinflussen.

Artikel lesen

Bernoullisches Gesetz

Für strömende Flüssigkeiten und Gase gilt das bernoullisches Gesetz. Es ist der Energieerhaltungssatz für reibungsfreie Strömungen und besagt:

Die Summe aus dem statischen Druck, dem Schweredruck und dem Staudruck ist für eine reibungsfreie Strömung konstant. Es gilt:
p + p S + p S t = konstant

Daraus ergibt sich bei konstantem Schweredruck ein für die Praxis wichtiger Zusammenhang: Je größer die Strömungsgeschwindigkeit einer Flüssigkeit oder eines Gases ist, desto kleiner ist der statische Druck. Das ist der senkrecht zur Strömung gemessenen Druck.
Benannt ist das Gesetz nach seinem Entdecker, dem Schweizer Mathematiker, Physiker und Mediziner DANIEL BERNOULLI (1700-1782).

Artikel lesen

Beschleunigung

Die Beschleunigung gibt an, wie schnell sich die Geschwindigkeit eines Körpers ändert.

Formelzeichen: a →
Einheit: ein Meter je Quadratsekunde ( 1   m ⋅ s − 2 )


Sie ist eine vektorielle Größe, also ebenso wie Weg und Geschwindigkeit durch Betrag und Richtung bestimmt. Demzufolge liegt eine beschleunigte Bewegung vor, wenn sich bei einer Bewegung

  • der Betrag der Geschwindigkeit oder
  • die Richtung der Geschwindigkeit oder
  • Betrag und Richtung der Geschwindigkeit
    ändern.

Spezielle Arten der Beschleunigung sind die bei der Kreisbewegung auftretende Radialbeschleunigung und die beim freien Fall wirkende Fallbeschleunigung.

Artikel lesen

Beschreibung mechanischer Schwingungen

Eine mechanische Schwingung ist eine zeitlich periodische Bewegung eines Körpers um eine Ruhelage. Solche Schwingungen kann man

  • in verschiedener Weise aufzeichnen,
  • in einem y-t-Diagramm darstellen oder
  • mithilfe solcher physikalischer Größen wie der Auslenkung, der Amplitude, der Schwingungsdauer (Periodendauer) und der Frequenz charakterisieren.
Artikel lesen

Beschreibung mechanischer Wellen

Eine mechanische Welle ist die Ausbreitung einer mechanischen Schwingung im Raum. Beispiele für mechanische Wellen sind Wasserwellen, Schallwellen, Seilwellen oder Erdbebenwellen.
Mechanische Wellen können beschrieben werden

 
  • mit Ort-Zeit- und Weg-Zeit-Diagrammen,

 

  • mit solchen physikalischen Größen wie Ausbreitungsgeschwindigkeit, Wellenlänge, Frequenz, Amplitude und Elongation,

 

  • mathematisch mit einer Wellengleichung.
Dabei beschränken wir uns auf die Beschreibung von sinusförmigen Wellen.
Artikel lesen

Bremsen

Bremsen bei Fahrzeugen sind für die Betriebssicherheit unerlässlich. Je nach der Bauart unterscheidet man zwischen Trommelbremsen und Scheibenbremsen. In beiden Fällen wird für das Abbremsen von Fahrzeugen die Gleitreibung zwischen speziellen Bremsbelägen und einer Bremstrommel bzw. Bremsscheibe genutzt. Dabei wird mechanische Energie in thermische Energie umgewandelt, die in Form von Wärme an die Umgebung abgegeben wird.

Artikel lesen

Dichte von Stoffen

Die Dichte gibt an, welche Masse ein Kubikzentimeter Volumen eines Stoffes hat.

Formelzeichen: ρ
Einheiten:ein Gramm je Kubikzentimeter ( 1 g c m 3 )
 ein Kilogramm je Kubikmeter ( 1 k g m 3 )
 ein Gramm je Liter ( g l )

Die Dichte ist eine für jeden Stoff charakteristische Stoffkonstante. Sie ist abhängig von der Temperatur und vom Druck.

Artikel lesen

Drehimpuls

Bei der Translation charakterisiert der Impuls den Bewegungszustand eines Körpers. In analoger Weise lässt sich bei der Rotation der Bewegungszustand eines rotierenden starren Körpers durch die physikalische Größe Drehimpuls kennzeichnen. Der Drehimpuls eines Körpers kann berechnet werden mit der Gleichung:

L → = J ⋅ ω → J Trägheitsmoment des Körpers ω → Winkelgschwindigkeit

Artikel lesen

Drehmoment und Drehmomentensatz

Bei Schraubenschlüsseln, Türklinken, Fahrrädern, Flaschenöffnern, Waagen oder Sportgeräten wirken Kräfte auf drehbare Körper. Das Drehmoment oder Kraftmoment ist die analoge Größe zur Kraft. Während die Kraft die Wirkung auf einen Körper beschreibt, der als Massepunkt angesehen werden kann und eine translatorische Bewegung ausführt, beschreibt das Drehmoment die Wirkung einer außerhalb der Drehachse angreifenden Kraft auf einen drehbar gelagerten starren Körper. Diese Wirkung kann durch solche Größen wie Drehwinkel, Winkelgeschwindigkeit und Winkelbeschleunigung beschrieben werden. Für das Drehmoment gilt:

M → = r → × F → und unter der Bedingung , dass die Kraft senkrecht am Hebel angreift , M = r ⋅ F .

Artikel lesen

Der Druck

Der Druck gibt an, mit welcher Kraft ein Körper auf eine Fläche von einem Quadratmeter wirkt.

Formelzeichen:p
Einheit:ein Pascal (1 Pa)

Der Druck kann allgemein berechnet werden mit der Gleichung: p = F A
Ein Pascal (1 Pa) ist die Abkürzung für die Einheit ein Newton je Quadratmeter. Benannt ist die Einheit nach dem französischen Mathematiker und Physiker BLAISE PASCAL (1623-1662).
Druck kann in Flüssigkeiten und in Gasen auftreten. Auch feste Körper können auf andere Körper Druck ausüben.

Artikel lesen

Eigenschaften mechanischer Wellen im Überblick

Mechanische Wellen, z. B. Wasserwellen oder Schallwellen, haben eine Reihe von charakteristischen Eigenschaften. Sie breiten sich von einem Erreger (Quelle) aus mit einer bestimmten Geschwindigkeit fort. Mit Wellen wird Energie, aber kein Stoff transportiert. Wellen können reflektiert und gebrochen werden. Es können auch Beugung und Interferenz (Überlagerung) auftreten. Darüber hinaus können mechanische Wellen absorbiert, gestreut oder polarisiert werden. Ebenfalls zu beobachten ist bei mechanischen Wellen Dispersion.

Artikel lesen

Mechanische Energie und ihre Erhaltung

Mechanische Energie ist die Fähigkeit eines Körpers, aufgrund seiner Lage oder seiner Bewegung mechanische Arbeit zu verrichten, Wärme abzugeben oder Strahlung auszusenden.

Formelzeichen: E mech
Einheiten:ein Joule (1 J)
ein Newtonmeter (1 Nm)


Spezielle Formen mechanischer Energie sind die potenzielle Energie und die kinetische Energie.
Für ein abgeschlossenes mechanisches System gilt der Energieerhaltungssatz der Mechanik.

Artikel lesen

Energie und Arbeit im Gravitationsfeld

Um eine Weltraumstation oder einen Satelliten in den Orbit zu bringen, ist eine bestimmte Arbeit im Gravitationsfeld der Erde erforderlich. Darüber hinaus muss der Station oder dem Satelliten eine bestimmte Geschwindigkeit verliehen werden, damit sie sich auf einer stabilen Bahn bewegen. Die Körper besitzen damit potenzielle und kinetische Energie. Arbeit und potenzielle Energie im Gravitationsfeld können mithilfe des Gravitationsgesetzes berechnet werden, die kinetische Energie ergibt sich aus der Masse und der Geschwindigkeit des Körpers.

Artikel lesen

Fadenpendel

Ein Fadenpendel ist ein einfacher mechanischer Schwinger, bei dem ein an einer Aufhängung befestigter Körper, der näherungsweise als punktförmig angesehen werden kann, in einer Ebene hin- und herschwingt.
Die Schwingungsdauer (Periodendauer) eines solchen Fadenpendels hängt nur von der Länge des Pendels und davon ab, wo sich das Pendel befindet.

Artikel lesen

Federschwinger

Ein Federschwinger oder Federpendel ist ein einfacher mechanischer Schwinger, bei dem ein an einer elastischen Feder befestigter Körper, der näherungsweise als punktförmig angesehen werden kann, in einer Richtung hin- und herschwingt.
Die Schwingungsdauer (Periodendauer) eines solchen Federschwingers hängt von der Masse des Pendelkörpers und von den elastischen Eigenschaften der Feder ab.

Artikel lesen

Freier Fall

Die Fallbewegung eines Körpers aus dem Ruhezustand, die nicht durch den Luftwiderstand behindert wird, nennt man freien Fall.
Der freie Fall ist eine gleichmäßig beschleunigte geradlinige Bewegung. Damit gelten für ihn die entsprechenden Gesetze für diese Art von Bewegungen. Die Beschleunigung ist gleich der Fallbeschleunigung g am jeweiligen Ort ist.

Artikel lesen

Gedämpfte harmonische Schwingungen

Mechanische Schwingungen können ungedämpft oder gedämpft verlaufen. Solche ungedämpften Schwingungen treten immer dann auf, wenn ein Schwinger einmalig angeregt wurde und sich selbst überlassen bleibt, also freie Schwingungen ausführt, wie das z.B. bei einer einmal angeschlagenen Saite einer Gitarre der Fall ist. Aufgrund von Reibungseffekten wird dann ständig mechanische Energie in thermische Energie umgewandelt. Damit verringert sich die Amplitude der Schwingungen.
Bei harmonischen mechanischen Schwingungen kann man die Abnahme der Amplitude auch mathematisch erfassen.

Artikel lesen

Geneigte Ebenen

Geneigte Ebenen sind kraftumformende Einrichtungen. Sie dienen dazu, mit einer kleinen Zugkraft schwere Körper zu bewegen und damit zu heben. Geneigte Ebenen werden bei Schrägaufzügen, Rolltreppen oder Transportbändern genutzt.
Mit geneigten Ebenen wird keine mechanische Arbeit gespart, sondern lediglich die notwendige Kraft zum Bewegen und Heben eines Gegenstandes verringert, wobei sich der zurückzulegende Weg vergrößert.

Artikel lesen

Die Geschwindigkeit

Die Geschwindigkeit gibt an, wie schnell oder wie langsam sich ein Körper bewegt. Sie ist eine vektorielle physikalische Größe und hat damit in jedem Punkt der Bewegung eines Körpers einen bestimmten Betrag und eine bestimmte Richtung.

Formelzeichen:v
Einheiten:

ein Meter je Sekunde (1 m/s)
ein Kilometer je Stunde (1 km/h)

Die Geschwindigkeit eines Körpers kann in unterschiedlicher Weise bestimmt werden. Dabei st zwischen der Durchschnittsgeschwindigkeit und der Augenblicksgeschwindigkeit zu unterscheiden.

Artikel lesen

Gewichtskräfte

Die Gewichtskraft gibt an, wie stark ein Körper auf eine Unterlage drückt oder an einer Aufhängung zieht.

Formelzeichen: F → G
Einheit:ein Newton (1 N)


Die Gewichtskraft kann mit der Gleichung F → G = m ⋅ g → berechnet werden. Sie ist wie jede andere Kraft eine gerichtete (vektorielle) Größe. Im Unterschied zur Masse ist die Gewichtskraft vom Ort abhängig, an dem sich der betreffende Körper befindet.
Ein spezieller Fall liegt vor, wenn die Kraft auf eine Unterlage oder eine Aufhängung null ist. Dann spricht man von Schwerelosigkeit oder Gewichtslosigkeit.

Artikel lesen

Gleichförmige Drehbewegung

Eine gleichförmige Drehbewegung liegt vor, wenn ein starrer Körper mit konstanter Winkelgeschwindigkeit rotiert. Beispiele dafür sind ein Riesenrad oder eine mit bestimmter Drehzahl rotierende Motorwelle. Die dafür geltenden Gesetze sind analog zu den Gesetzen für die gleichförmige Bewegung bei der Translation:
α = 0 ω = Δ ϕ Δ t ϕ = ω ⋅ t + ϕ 0

Seitennummerierung

  • Aktuelle Seite 1
  • Seite 2
  • Seite 3
  • Seite 4
  • Seite 5
  • Seite 6
  • Next Page

139 Suchergebnisse

Fächer
  • Physik (139)
Klassen
  • Oberstufe/Abitur (139)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025