Direkt zum Inhalt

7690 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Lineare Ungleichungen mit zwei Variablen

Zwei Terme, zwischen denen eines der Zeichen < ,     > ,     ≤ ,     ≥  oder  ≠ steht, bilden eine Ungleichung.

Ungleichungen der Form a x + b y + c < 0       ( a ,   b ≠ 0 ) oder solche, die durch äquivalentes Umformen in diese Form überführt werden können, heißen lineare Ungleichungen mit zwei Variablen.

Artikel lesen

François Vieta

* 1540 in Fontenay-le-Comte
† 13. Dezember 1603 in Paris

FRANÇOIS VIÈTE – der Name wird meist in der latinisierten Form VIETA (gesprochen: Vi-eta) angegeben – arbeitete auf den Gebieten der Trigonometrie und Gleichungslehre.
Unter anderem beschäftigte er sich mit der Berechnung der Kreiszahl π . Zu seinen Verdiensten gehört die Einführung von Buchstaben als allgemeine Zahlzeichen.

Artikel lesen

Bernard Placidus Johann Nepomuk Bolzano

* 5. Oktober 1781 Prag
† 18. Dezember 1848 Prag

Der böhmische Theologe BERNARD BOLZANO leistete wesentliche Beiträge zu Grundlagen der Analysis, insbesondere zum näherungsweisen Bestimmen von Nullstellen.
Er gilt zudem als ein Wegbereiter der modernen Logik und Mengenlehre.

Artikel lesen

Augustin Louis Cauchy

* 21. August 1789 Paris
† 23. Mai 1857 Sceaux bei Paris

AUGUSTIN LOUIS CAUCHY war vorrangig auf dem Gebiet der Analysis tätig. Er entwickelte die von LEIBNIZ und NEWTON aufgestellten Grundlagen weiter, indem er sie als zusammenhängende Theorie formulierte und entsprechende Aussagen bewies. Zudem begründete er die Funktionentheorie einer komplexen Variablen.

Artikel lesen

Nutzpflanzen, Einheimische

Zu den einheimischen Nutzpflanzen gehören verschiedene Getreidearten, die Kartoffel, die Zuckerrübe, Gemüse-, Obst- und Ölpflanzen u.a. Pflanzen.

Von den Nutzpflanzen werden Samen, Früchte oder andere Pflanzenteile durch den Menschen genutzt.

Artikel lesen

Grenzverhalten von Funktionen

Zusammenhänge aus verschiedensten Praxisbereichen lassen sich mithilfe von Funktionen beschreiben und dadurch bezüglich bestimmter Eigenschaften untersuchen. Neben anderen Eigenschaften kann dabei auch das Grenzverhalten von Funktionen, also die Veränderung ihrer Werte für unbegrenzt wachsende bzw. fallende Argumente bedeutsam sein.

Artikel lesen

Grenzwerte von Zahlenfolgen

Unter dem Grenzwert einer Zahlenfolge ( a n ) versteht man eine Zahl g mit folgender Eigenschaft:
Für jedes ε > 0 liegen fast alle Glieder der Zahlenfolge in der
ε -Umgebung von g, d.h., von einem bestimmten n an gilt |   a n − g   | < ε .
Zahlenfolgen mit dem Grenzwert 0 heißen Nullfolgen

Artikel lesen

Grenzwertsätze für Zahlenfolgen

Bei der Untersuchung von Zahlenfolgen auf Konvergenz sind Grenzwertsätze von Nutzen. Mit deren Hilfe lassen sich Folgen komplizierterer Struktur auf einfachere Zahlenfolgen mit bekannten Grenzwerten zurückführen.

Artikel lesen

Nullfolgen

Unter den konvergenten Zahlenfolgen spielen die mit dem Grenzwert 0 eine besondere Rolle. Sie heißen Nullfolgen und sind u.a. für das Berechnen von Grenzwerten beliebiger Zahlenfolgen von Bedeutung. Die Betrachtung verschiedener Zahlenfolgen führt zu der Folgerung, dass jede geometrische Folge ( a n ) = a 1 ⋅ q n − 1     m i t     |   q   | < 1 eine Nullfolge ist.

Artikel lesen

Das Paradoxon von Achilles und der Schildkröte

Das Paradoxon von ACHILLES und der Schildkröte ist das wohl bekannteste der Paradoxa des griechischen Philosophen ZENON von Elea (490 bis 430 v.Chr.).
Der (scheinbare) Widerspruch der mathematischen Überlegungen ZENONS zur Wirklichkeit konnte allerdings erst mithilfe des Grenzwertbegriffes bzw. der Konvergenz unendlicher geometrischer Reihen geklärt werden.

Artikel lesen

Stetigkeit

Der Begriff Stetigkeit gehört zu den zentralen Ideen der Differenzial- und Integralrechnung. Wenn man in der Umgangssprache einen bestimmten Vorgang als „stetig“ bezeichnet, so meint man damit, dass er ohne Unterbrechung und ohne sprunghafte Veränderungen abläuft. Eine ganz ähnliche Bedeutung hat der Begriff in der Mathematik.

Artikel lesen

Sätze über stetige Funktionen

Funktionen, die an jeder Stelle ihres Definitionsbereiches stetig sind, nennt man stetige Funktionen oder auch global stetig.

Artikel lesen

Umgebungen

Der Begriff der Umgebung ist in der Analysis in verschiedenen Zusammenhängen von Bedeutung, z.B. bei der Definition des Grenzwertes von Zahlenfolgen oder Funktionen bzw. bei der Erklärung der Begriffe Maximum und Minimum von Funktionen.

Artikel lesen

Karl Theodor Wilhelm Weierstraß

* 31. Oktober 1815 Ostenfelde (Westfalen)
† 19. Februar 1897 Berlin

KARL WEIERSTRASS arbeitete vor allem auf den Gebieten der Funktionentheorie und der Analysis. Er lehrte an der Berliner Universität; zu seinen Schülern gehörten solche bekannten Mathematiker wie GEORG CANTOR und FELIX KLEIN.

Artikel lesen

Ableitung einer Funktion

Existiert an der Stelle x 0 des Definitionsbereiches einer Funktion f der Grenzwert
  lim h → 0 f ( x 0 + h ) − f ( x 0 ) h ,
so wird dieser als Ableitung oder Differenzialquotient von f an der Stelle x 0 bezeichnet.
Die Ableitung gibt den Anstieg des Funktionsgraphen an der Stelle x 0 an.

Artikel lesen

Ohrenqualle, Generationswechsel

Die Quallen (wissenschaftlich auch Medusen genannt) gehören ebenso wie die Polypen zu den Hohltieren. Bei der Fortpflanzung der Ohrenqualle wechselt eine geschlechtliche (Medusengeneration) und eine ungeschlechtliche Generation (Polypengeneration) ab. Dies bezeichnet man als Generationswechsel.

Artikel lesen

Berühmte mathematische Sätze

Das Theoriegebäude der Mathematik fußt auf nicht definierten Grundbegriffen sowie auf Aussagen, die im jeweiligen mathematischen System nicht zu beweisen sind, den sogenannten Axiomen. Über dieser Basis erhebt sich ein Geflecht von abgeleiteten Begriffen und durch Beweise gesicherten Aussagen, den mathematischen Sätzen.
Daneben stehen Aussagen, deren Wahrheitswert noch nicht bewiesen werden konnte und die deshalb den Charakter von Vermutungen tragen.
Der Beweis für den Großen fermatschen Satz und die Lösung des Vierfarbenproblems gelangen erst in jüngerer Vergangenheit. Demgegenüber stehen Beweise für die goldbachsche Vermutung oder die Vermutung über Primzahlzwillinge noch aus.

Artikel lesen

Ableitungen höherer Ordnung

Höhere Ableitungen einer Funktion f gestatten Rückschlüsse auf den Verlauf des Funktionsgraphen.
Ein Beispiel praktischer Anwendung höherer Ableitungen stellt die Untersuchung von Bewegungsabläufen in der Physik (etwa der Anfahrfunktion eines Kraftfahrzeuges) dar. Geschwindigkeit und Beschleunigung sind hier als erste bzw. zweite Ableitung des Weges nach der Zeit definiert.

Artikel lesen

Partielle Ableitungen

Für eine Funktion mit einer Gleichung y = f ( x ) , also für eine Funktion mit genau einer unabhängigen Variablen x, ist die erste Ableitung y ' = f ' ( x 0 ) an einer Stelle x 0 erklärt durch den Grenzwert des Differenzenquotienten an dieser Stelle:
f ' ( x 0 ) = lim h   →   0 f ( x 0 + h ) − f ( x 0 ) h

Interpretiert man diesen Grenzwert geometrisch, so gibt er den Anstieg der Tangente an den Graphen von f im Punkte P 0 ( x 0 ;     f ( x 0 ) ) an.

Es sei nun z = f ( x ,     y ) die Gleichung einer Funktion f mit zwei unabhängigen Variablen x und y. Betrachtet man diese Funktion für ein konstantes y = y 0 , so erhält man eine Funktion z = f ( x ,     y 0 ) mit nunmehr nur einer unabhängigen Variablen x, für die man wie oben angegeben den Grenzwert des Differenzenquotienten an einer Stelle x 0 aufstellen kann. Existiert dieser Grenzwert, so nennt man ihn die partielle Ableitung erster Ordnung der Ausgangsfunktion z = f ( x ,     y ) nach x an der Stelle ( x 0 ;     y 0 ) und schreibt:
f x ( x 0 ;     y 0 ) = lim h   →   0 f ( x 0 + h ,     y 0 ) − f ( x 0 ,     y 0 ) h

Artikel lesen

Ableitung der Kosinusfunktion

Im Folgenden wird gezeigt, dass die Kosinusfunktion f ( x ) = cos x im gesamten Definitionsbereich differenzierbar ist und die Ableitungsfunktion f ' ( x ) = −   sin x   besitzt.
Dazu betrachten wir den Graph der Kosinusfunktion f ( x ) = cos x       ( x ∈ ℝ ) im Intervall von 0 bis 2   π .

Artikel lesen

Ableitungsfunktion

Existiert der Differenzialquotient einer Funktion y = f ( x ) für alle Punkte eines Intervalls, so ist die Funktion im ganzen Intervall differenzierbar. Jedem x-Wert des Intervalls ist ein Wert des Differenzialquotienten zugeordnet, der also wiederum eine Funktion von x ist. Man nennt diese die abgeleitete Funktion oder Ableitungsfunktion (oder kurz Ableitung):
  f ′ :     x → f ′ ( x )
Anmerkung: f heißt Stammfunktion zu f ′ .

Artikel lesen

Ableitung der Sinusfunktion

Im Folgenden wird gezeigt, dass die Sinusfunktion f ( x ) = sin x im gesamten Definitionsbereich differenzierbar ist und die Ableitungsfunktion f ' ( x ) = cos x besitzt.
Dazu betrachten wir den Graph der Sinusfunktion f ( x ) = sin x       ( x ∈ ℝ ) im Intervall von 0 bis 2   π .

Artikel lesen

Ableitung der Tangens- und der Kotangensfunktion

Im Folgenden wird gezeigt, dass die Tangensfunktion f ( x ) = tan x in ihrem gesamten Definitionsbereich ( x ∈ ℝ ;       x ≠ π 2 + k ⋅ π ;       k ∈ ℤ ) differenzierbar ist und dort die Ableitungsfunktion f ' ( x ) = 1 cos 2 x       b z w .       f ' ( x ) = 1 + tan 2 x besitzt.
Die Ableitung der Kotangensfunktion kann auf analogem Wege ermittelt werden.

Dazu betrachten wir den Graph der Tangensfunktion f ( x ) = tan x       ( x ∈ ℝ ;     x ≠ π 2 + k ⋅ π ;     k ∈ ℤ ) im Intervall von 0 bis 2   π .

Artikel lesen

Geschichte der Analysis

Die Analysis (oder auch Infinitesimalrechnung) beschäftigt sich im Wesentlichen mit der Differenzial- und Integralrechnung.
Ausgangspunkt für die Integralrechnung war das schon in der Antike betrachtete Problem der Bestimmung des Inhalts von Flächen und Körpern, wie etwa von Rotationskörpern.
Die Differenzialrechnung hat ihre Wurzeln dagegen im Tangentenproblem, mit dem sich Mathematiker im 17. Jahrhundert intensiver beschäftigten.
Im 18. Jahrhundert wurde der Zusammenhang zwischen dem Differenzieren und Integrieren erkannt und im Hauptsatz der Differenzial- und Integralrechnung formuliert. Hierzu trugen wesentlich ISAAC NEWTON und GOTTFRIED WILHELM LEIBNIZ bei.

Artikel lesen

Asymptoten (asymptotische Linien)

Untersucht man ganzrationale Funktionen für beliebige große bzw. kleine x-Werte, so werden auch die Funktionswerte beliebig groß oder klein:
Für x → ±   ∞ gilt |   f ( x )   | = +   ∞ .

Völlig verschieden davon ist das Verhalten gebrochenrationaler Funktionen der Form
f(x) = p(x) q(x) .

Deren Graphen schmiegen sich für beliebig groß bzw. klein werdende Argumente immer mehr an eine Gerade an. Derartige Geraden werden Asymptoten des Graphen der Funktion genannt. Man unterscheidet zwischen waagerechten (horizontalen) und schiefen Asymptoten sowie asymptotischen Linien bzw. Kurven.

Anmerkung: Gelegentlich werden auch die Polgeraden bei vorhandenen Definitionslücken als senkrechte (vertikale) Asymptoten bezeichnet.

Seitennummerierung

  • Previous Page
  • Seite 216
  • Seite 217
  • Aktuelle Seite 218
  • Seite 219
  • Seite 220
  • Seite 221
  • Next Page

7690 Suchergebnisse

Fächer
  • Biologie (993)
  • Chemie (1168)
  • Deutsch (965)
  • Englisch (649)
  • Geografie (348)
  • Geschichte (408)
  • Kunst (332)
  • Mathematik (884)
  • Musik (311)
  • Physik (1278)
  • Politik/Wirtschaft (354)
Klassen
  • 5. Klasse (4621)
  • 6. Klasse (4621)
  • 7. Klasse (4621)
  • 8. Klasse (4621)
  • 9. Klasse (4621)
  • 10. Klasse (4621)
  • Oberstufe/Abitur (4820)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025