Direkt zum Inhalt

129 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Zinseszins, Berechnen

Wenn ein Kapital über längere Zeiträume verzinst wird, werden die anfallenden Zinsen im Allgemeinen dem Kapital zugeschlagen und im folgenden Jahr mit verzinst.
Die Rechnung dafür heißt Zinseszinsrechnung.
Dabei wächst ein Anfangskapital K 0 bei einem Prozentsatz p % über einen Zeitraum von n Jahren auf ein Endkapital K n .

Artikel lesen

Trapez

Ein Viereck mit einem Paar paralleler Seiten heißt Trapez.
Die parallelen Seiten sind die Grundseiten, die beiden anderen Seiten die Schenkel des Trapezes.
Der Abstand der Grundseiten ist die Höhe h des Trapezes.
Die Verbindungsstrecke der Mitten der Schenkel heißt Mittellinie m.
Sind in einem Trapez die Schenkel gleich lang, so heißt es gleichschenklig. Hat das Trapez einen rechten Innenwinkel, so heißt es rechtwinkliges Trapez.

Artikel lesen

Quadratische Gleichungen, Lösungsformel

Die Gleichung zur Berechnung der beiden Lösungen x 1  und  x 2 der quadratischen Gleichung aus den Parametern p und q heißt Lösungsformel einer quadratischen Gleichung in der Normalform.
Der Term ( p 2 ) 2 − q heißt Diskriminante der quadratischen Gleichung.

Artikel lesen

Sekantennäherungsverfahren

Die regula falsi (das Sekantennäherungsverfahren) gehört zu den Näherungsverfahren zum Bestimmen der Lösungen von Gleichungen, bei denen die Anwendung exakter Verfahren zur Berechnung nicht existieren oder in ihrer Handhabung zu aufwendig sind.
Das gilt z. B. für das Bestimmen der Lösungen von Gleichungen dritten oder höheren Grades mit einer Unbekannten, für Wurzelgleichungen, Exponentialgleichungen, Logarithmengleichungen und trigonometrische Gleichungen. Aber auch die Berechnung krummlinig begrenzter Flächen oder krummflächig begrenzter Körper erfordert meist den Einsatz von Näherungsverfahren.

Artikel lesen

Verhältnisgleichungen

Viele Probleme, bei denen mit drei gegebenen Größen eine vierte berechnet wird, führen auf Verhältnisgleichungen (Proportionen).
Eine Gleichung der Form
a b = c d     (   a ,b ,c ,d ≠ 0   )
heißt Verhältnisgleichung oder Proportion.
Dabei wird der Quotient zweier Größen als Verhältnis bezeichnet. Verhältnisgleichungen haben eine große Bedeutung bei der Prozentrechnung, bei den Strahlensätzen und bei linearen Funktionen der Form y = mx.

Artikel lesen

Nullstellen

Jede Zahl x aus dem Definitionsbereich einer Funktion f, für die
f(x) = 0 gilt, nennt man Nullstelle dieser Funktion.

Artikel lesen

Geometrische Folgen

Eine geometrische Zahlenfolge ist dadurch charakterisiert, dass die Folgenglieder jeweils durch Multiplikation mit dem konstanten Faktor q aus dem vorhergehenden Glied entstehen.
Jedes Folgenglied (außer dem ersten) ist das geometrische Mittel seiner beiden Nachbarglieder.

Artikel lesen

Gerade und ungerade Funktionen

Eine Funktion f heißt gerade Funktion, wenn mit x auch (–x) zu ihrem Definitionsbereich gehört und für alle Argumente x gilt:
  f ( −   x ) = f ( x )
Eine Funktion f heißt ungerade Funktion, wenn mit x auch (–-x) zu ihrem Definitionsbereich gehört und für alle Argumente x gilt:
  f ( −   x ) = −   f ( x )

Artikel lesen

Betragsfunktion

Die Betragsfunktion ist eine stückweise erklärte stetige Funktion. Sie ist folgendermaßen definiert:
  f   ( x ) = {     x   für  x ≥ 0 − x   für  x < 0

Artikel lesen

Bogenmaß

Zwischen der Größe des Winkels α eines Kreissektors und der Länge b des zugehörigen Bogens besteht eine umkehrbar eindeutige Beziehung. Bezeichnet u die Länge des Umfangs des gesamten Kreises (mit dem Radius r), so gilt:
  b   :   u = α   :   360 °
Mit u = 2 π ⋅ r folgt hieraus:
  b   :   2 π r = α   :   360 °
bzw.
  b = π 180 ° r ⋅ α
Bildet man nun das Verhältnis b r , so ist dies wegen b r = π 180 ° ⋅ α nur von der Größe des Winkels α abhängig. Zu jedem Winkel α , dessen Größe in Gradmaß angegeben ist, gehört also ein eindeutig bestimmter Wert des Verhältnisses b r , der sich mittels π 180 ° ⋅ α berechnen lässt.

Artikel lesen

Logarithmengleichungen

Logarithmengleichungen nennt man solche Gleichungen, in denen die Variable im Argument des Logarithmus auftritt.

Artikel lesen

Algebraische Gleichungen

In einer algebraischen Gleichung werden mit der Variablen nur algebraische Rechenoperationen vorgenommen, d. h., die Variablen werden addiert, subtrahiert, multipliziert, dividiert bzw. potenziert oder radiziert.
Jede algebraische Gleichung kann in der folgenden allgemeinen Form dargestellt werden:
  a n x n + a n − 1 x n − 1 + ... + a 2 x 2 + a 1 x + a 0 = 0

Artikel lesen

Trigonometrische Gleichungen

Trigonometrische Gleichungen (goniometrische Gleichungen) sind solche Gleichungen, in denen die Unbekannte im Argument von Winkelfunktionen vorkommt.

Artikel lesen

Exponentialfunktionen

Funktionen mit Gleichungen der Form
  y = f ( x ) = a x   ( a ∈ ℝ ;       a > 0 ;       a ≠ 1 )
heißen Exponentialfunktionen. Ihr Definitionsbereich ist die Menge ℝ der reellen Zahlen.

Artikel lesen

Folgen, Allgemeines

Eine Funktion, deren Defitionsbereich die Menge der natürlichen Zahlen (oder eine Teilmenge davon) ist und die eine Teilmenge der reellen Zahlen als Wertebereich besitzt, wird (reelle) Zahlenfolge genannt.
Unter der n-ten Partialsumme einer s n einer Zahlenfolge ( a n ) versteht man die Summe der Folgenglieder von a 1 bis a n .

Artikel lesen

Arithmetische Folgen

Eine arithmetische Zahlenfolge ist dadurch charakterisiert, dass aufeinanderfolgende Glieder alle den gleichen Abstand d haben. Jedes Folgeglied (außer dem ersten) ist das arithmetische Mittel seiner benachbarten Glieder.

Artikel lesen

Quadratische Funktionen

Eine Funktion mit einer Gleichung der Form

  y = f ( x ) = a x 2 + b x + c   ( mit  a ≠ 0,       x ∈ ℝ )

oder einer Gleichung, die durch äquivalentes Umformen in diese Form überführt werden kann, heißt quadratische Funktion.
Dabei nennt man a x 2 das quadratische Glied, bx das lineare Glied und c das absolute Glied der Funktionsgleichung.
Der Graph einer quadratischen Funktion ist eine Parabel.

Artikel lesen

Funktionenscharen

In Funktionsgleichungen können Parameter in additiver und multiplikativer Verknüpfung mit Funktionstermen bzw. mit der Funktionsvariablen auftreten. Aus einer Funktionsgleichung y = f   ( x ) entstehen so z. B. die Gleichungen y = f   ( x ) + c , y = f   ( x + d ) , y = a ⋅ f   ( x ) oder y = f   ( b ⋅ x ) .
Diese Parameter haben Einfluss auf Eigenschaften und Verlauf der Graphen der Funktion.

Artikel lesen

Funktionen, y = mx

Jeder direkt proportionale Zusammenhang zwischen zwei Größen y und x kann durch eine spezielle lineare Funktion mit der Gleichung
  y = ( x ) = m x + n   ( m ≠ 0 )
beschrieben werden.
Definitionsbereich und Wertebereich (Wertevorrat) von f ist die Menge der reellen Zahlen ℝ . Der Graph von f ist eine Gerade, die durch den Koordinatenursprung verläuft

Artikel lesen

Funktionen, y = mx + n

Eine Funktion f mit einer Gleichung der Form
  y = f ( x ) = m x + n   ( m ,   n ∈ ℝ )
oder einer Gleichung, die durch äquivalentes Umformen in diese Form überführt werden kann, heißt lineare Funktion.
Für lineare Funktionen ist der Definitionsbereich im Allgemeinen die Menge der reellen Zahlen (so nicht das mathematische oder das entsprechenden Anwendungsproblem einen Einschränkung verlangt), was dann auch für den Wertebereich ( m ,   n ≠ 0 ) gilt. Die Zahlen m und n sind Parameter.

Artikel lesen

Ebenes Koordinatensystem

Koordinatensysteme sind unentbehrliche Hilfsmittel, wenn man geometrische Probleme mit rechnerischen Mitteln lösen will oder umgekehrt die Resultate geometrisch interpretieren möchte, die sich bei der Behandlung bestimmter Probleme mit rechnerischen Methoden ergeben haben.
Am gebräuchlichsten ist das kartesische Koordinatensystem.

Artikel lesen

Parallelogramm

Ein Viereck, dessen gegenüberliegende Seiten parallel sind, heißt Parallelogramm. Die gegenüberliegenden Seiten sind demzufolge gleich lang. Die Diagonalen in einem Parallelogramm halbieren einander. Die gegenüberliegenden Winkel sind gleich groß.

Artikel lesen

Polarkoordinatensystem

Ein Polarkordinatensystem besteht aus einem festen Punkt O und einer von diesem Punkt ausgehenden Halbgeraden (Achse). Ein beliebiger Punkt P der Ebene lässt sich dann eindeutig durch Angabe seiner Polarkoordinaten r und ϕ festlegen.

Artikel lesen

Gerade Potenzfunktionen

Funktionen mit Gleichungen der Form y = x n     ( x   ∈ ℝ ,     n ∈   ℤ ) heißen Potenzfunktionen.
Ist der Exponent n in y = f ( x ) = x n eine gerade Zahl (n = 2k mit k ∈ ℤ ), so liegen gerade Funktionen vor.

Artikel lesen

Ungerade Potenzfunktionen

Funktionen mit Gleichungen der Form y = x n     ( x   ∈ ℝ ,     n ∈   ℤ ) heißen Potenzfunktionen.
Ist der Exponent n in y = f ( x ) = x n eine ungerade Zahl (n = 2k + 1 mit k ∈ ℤ ), so liegen ungerade Funktionen vor.

Seitennummerierung

  • Previous Page
  • Seite 1
  • Aktuelle Seite 2
  • Seite 3
  • Seite 4
  • Seite 5
  • Seite 6
  • Next Page

129 Suchergebnisse

Fächer
  • Mathematik (129)
Klassen
  • 5. Klasse (112)
  • 6. Klasse (112)
  • 7. Klasse (112)
  • 8. Klasse (112)
  • 9. Klasse (112)
  • 10. Klasse (112)
  • Oberstufe/Abitur (17)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2026