Direkt zum Inhalt

455 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Archimedes, Leistungen

ARCHIMEDES von Syrakus, griechischer Mathematiker, Physiker und Erfinder
* um 287 v. Chr. Syrakus
† 212 v. Chr. Syrakus

ARCHIMEDES wissenschaftliche Leistungen liegen vor allem auf dem Gebiet der Mathematik und der Naturwissenschaften. Bekannt sind u. a. folgende Schriften von ihm:

  • dem Begriff „Schwerpunkt“ von Flächen und Körpern
  • Methoden zur Flächeninhalts- und Volumenbestimmung mathematischer Figuren und Körper
  • mathematischen Grundlagen physikalischer Prozesse (Hebelgesetz)
  • astronomischen Inhalten
Artikel lesen

Zinsrechnung, Wissenswertes und Historisches

Der Begriff Zins kommt vom lateinischen Wort census. Dies bedeutet so viel wie (Vermögens-) Schätzung oder Abgabe.
Im Mittelalter wurden mit Zins auch die zu entrichtenden Abgaben an Grundherren, Kirche usw. bezeichnet.
Heute beruht die Verpflichtung zur Zahlung von Zinsen auf entprechenden Verträgen bzw. Gesetzen.

Artikel lesen

Zinssätze, Berechnen

Wenn man einen Zinsbetrag und das entsprechende Kapital kennt, kann man den zugehörigen Zinssatz berechnen, indem man die erhaltenen Zinsen durch das Kapital dividiert und dann in Prozent angibt.

Artikel lesen

Zinsstaffel

Bei der kaufmännischen Zinsrechnung, insbesondere bei Abrechnungen zwischen Banken und Kunden, wird die Kontokorrentrechnung (Rechnung mit Soll und Haben) verwendet. Die Kontenseiten werden dabei aus der Sicht der Bank bezeichnet. Habenposten sind also für den Bankkunden Guthaben, Gutschriften, Einzahlungen, Überweisungseingänge usw. Sollposten sind für den Bankkunden Verbindlichkeiten, Abhebungen, Überweisungsausgänge, Abbuchungen eigener Schecks usw.

Artikel lesen

Rechenstab

Der logarithmische Rechenstab war bis Mitte der achtziger Jahre des 20. Jahrhunderts ein nicht wegzudenkendes Rechenhilfsmittel. Das Prinzip des Rechenstabs wurde bereits in den zwanziger Jahren des 17. Jahrhunderts von EDMUND GUNTER (1581 bis 1626) vorgestellt. Doch erst WILLIAM OUGHTRED (1574 bis 1660) ist die Entwicklung des „Rechenschiebers“ mit aneinandergleitenden Skalen zuzuschreiben.
Neben der geschichtlichen Entwicklung werden Aufbau und Skalen des Rechenstabs beschrieben.

Artikel lesen

Zinszahlen, Zinsteiler

Bei der kaufmännischen Zinsrechnung sind vorwiegend Tageszinsen zu berechnen, wobei die Zinssätze im Allgemeinen p. a. (pro Jahr) angegeben werden.
Die Formel zum Berechnen der Tageszinsen wird dabei vereinfacht.

Artikel lesen

Niels Henrik Abel

NIELS HENRIK ABEL (1802 bis 1829), norwegischer Mathematiker
* 5. August 1802 Insel Finnöy
† 6. April 1829 Froland

NIELS HENRIK ABEL befasste sich mit der Lösbarkeit von Gleichungen n-ten Grades. Im Jahre 1826 gelang ihm der Nachweis, dass es für Gleichungen 5. Grades keine geschlossene Lösungsformel geben kann.

Artikel lesen

Additionsverfahren

Werden die beiden linearen Gleichungen eines Gleichungssystems addiert, um die Lösung des Gleichungssystems zu erhalten, so wird dieses Verfahren Additionsverfahren genannt.

Ein lineares Gleichungssystem mit zwei Variablen wird mit dem Additionsverfahren in folgenden Schritten gelöst:

  1. Falls nötig wird eine Gleichung oder werden beide lineare Gleichungen so umgeformt, dass bei Addition der Gleichungen eine der beiden Variablen wegfällt.
  2. Beide Gleichungen werden addiert.
  3. Die entstandene lineare Gleichung mit nur einer Variablen wird gelöst.
  4. Die so erhaltene Lösung wird in eine der beiden Ausgangsgleichungen eingesetzt und diese Gleichung gelöst.
Artikel lesen

Muhammad ibn Musa Al-Chwarizmi

MUHAMMAD IBN MUSA AL-CHWARIZMI, persisch-arabischer Mathematiker
* um 780 Bagdad (heute in Irak)
† um 850

MUHAMMAD IBN MUSA AL-CHWARIZMI (auch AL-KHWARIZMI) war ein persisch-arabischer Mathematiker, der etwa von 780 bis 850 lebte und insbesondere am Hof des Kalifen AL-MANSUR in Bagdad wirkte.
AL-CHWARIZMI führte die indische Ziffernschreibweise und damit das dekadische Positionssystem in den arabischen Kulturkreis ein und beschrieb diese in einem Lehrbuch, das 820 erschien. In diesem Buch findet man vor allem die Gesamtheit der Regeln (Handlungsvorschriften) zum formalen Lösen von Gleichungen – und aus dem Namen des Autors wurde für Handlungsvorschriften der Begriff „Algorithmus“ abgeleitet.

Artikel lesen

Algebra, Fundamentalsatz

Als Fundamentalsatz der Algebra wird folgende Aussage bezeichnet:
Jedes Polynom
P ( n ) = x n + a n − 1 x n − 1 + a n − 2 x n − 2 + ... + a 1 x + a 0   ( n ≥ 1 )
hat mindestens eine Nullstelle.
Diese Nullstelle muss nicht reell sein.

Artikel lesen

Gaußscher Algorithmus

Ein Verfahren zur Lösung linearer Gleichungssysteme mit drei und mehr Unbekannten ist der gaußsche Algorithmus (das gaußsche Elimierungsverfahren).

Artikel lesen

Cardanische Formel

Die kubische Gleichung oder Gleichung dritten Grades hat die allgemeine Form
A x 3 + B x 2 + C x + D = 0     ( A ≠ 0 ) .
Nach Division durch A hat sie die Form
x 3 + a x 2 + b x + c = 0 .
Nach dem Fundamentalsatz der Algebra hat eine kubische Gleichung genau drei Lösungen. Eine Lösungsformel, die sogenannte cardanische Formel, wurde in der Renaissance gefunden und im Jahre 1545 veröffentlicht.

Artikel lesen

Adam Ries

ADAM RIES (1492 bis 1559), Rechenmeister in Erfurt und Annaberg
* 1492 Staffelstein (Franken)
† 30. März 1559 Erfurt

ADAM RIES ist vor allem bekannt als Rechenmeister und Verfasser mehrerer hervorragender Rechenbücher in deutscher Sprache.

Artikel lesen

Evariste Galois

EVARISTE GALOIS (1811 bis 1832), französischer Mathematiker
* 18. Oktober 1811 Bourg-la-Reine bei Paris
† 31. Mai 1832 Paris

EVARISTE GALOIS gelang eine Klärung der Lösbarkeit algebraischer Gleichungen durch Wurzelgrößen (Radikale). Er benutzte dazu die Gruppentheorie.

Artikel lesen

Gleichsetzungsverfahren

Werden die beiden linearen Gleichungen des linearen Gleichungssystems nach derselben Variablen aufgelöst und die entsprechenden Terme gleichgesetzt, um die Lösung des Gleichungssystems zu bestimmen, so nennt man dieses Verfahren Gleichsetzungsverfahren.

Ein lineares Gleichungssystem mit zwei Variablen wird mit dem Gleichsetzungsverfahren in folgenden Schritten gelöst:

  1. Es werden – falls nötig – beide lineare Gleichungen nach derselben Variablen aufgelöst.
  2. Die erhaltenen Terme werden gleichgesetzt.
  3. Die so entstandene lineare Gleichung mit nur einer Variablen wird gelöst.
  4. Die erhaltene Lösung wird in eine der beiden Ausgangsgleichungen eingesetzt und die Gleichung gelöst.
Artikel lesen

Algebraische Gleichungen

In einer algebraischen Gleichung werden mit der Variablen nur algebraische Rechenoperationen vorgenommen, d. h., die Variablen werden addiert, subtrahiert, multipliziert, dividiert bzw. potenziert oder radiziert.
Jede algebraische Gleichung kann in der folgenden allgemeinen Form dargestellt werden:
  a n x n + a n − 1 x n − 1 + ... + a 2 x 2 + a 1 x + a 0 = 0

Artikel lesen

Diophantische Gleichungen

Lineare Gleichungen mit zwei gesuchten (freien) Variablen haben im Bereich der reellen Zahlen ℝ unendlich viele Lösungen. Dies sind Zahlenpaare, die diese Gleichungen erfüllen.
Für a, b, c, x, y ∈ ℝ gibt es unendliche viele Paare (x; y), für welche die Gleichung ax + by + c = 0 zu einer wahren Aussage wird.
Wird in der linearen Gleichung ax + by = c der Variablengrundbereich für a, b, c, x und y auf die Menge der ganzen Zahlen eingeschränkt, so spricht man von diophantischen Gleichungen.

Artikel lesen

Gleichungen, grafisches Lösen

Gleichungen, für die exakte Lösungsverfahren nicht bekannt oder zu zeitaufwändig sind, lassen sich oft mit hinreichender Genauigkeit grafisch lösen. Dabei geht man von der zu lösenden Bestimmungsgleichung zur entsprechenden Funktionsgleichung über, stellt (unter Verwendung eines Taschenrechners) eine Wertetabelle auf und zeichnet den Graphen der Funktion. Die Abszissen der Schnittpunkte des Funktionsgraphen mit der x-Achse, also die Nullstellen, sind die Lösungen der Gleichung. Man liest sie näherungsweise ab. Die Genauigkeit beim Ablesen kann verbessert werden, wenn die Funktion in einem immer engeren Intervall um die Nullstelle herum dargestellt wird.

Artikel lesen

Gleichungen, Inhaltliches Lösen

Das Lösen von Gleichungen (Ungleichungen) gelingt oftmals durch einfache Überlegungen ohne Anwendung formaler Regeln. Man spricht dann vom inhaltlichen Lösen einer Gleichung (Ungleichung) im Unterschied zum kalkülmäßigen Lösen (Anwenden von Lösungsverfahren).
Zu den Verfahren des inhaltlichen Lösens einer Gleichung (Ungleichung) zählt man im Allgemeinen das Zerlegen von Termen und Zahlen, das Einsetzen bzw. das systematische Probieren, das Rückwärtsschließen und das Schließen unter Benutzung von Veranschaulichungen.

Artikel lesen

Gleichungen, Lösen

Treten Variablen in einer Gleichung auf, so werden diese erst dann zu einer wahren oder falschen Aussage, wenn die Variablen mit Zahlen oder Größen aus einer Grundmenge belegt werden.
Das Bestimmen aller Zahlen, die die Gleichung zu einer wahren Aussage machen, heißt Lösen der Gleichung. Jede solche Zahl heißt Lösung und alle diese Zahlen zusammen bilden die Lösungsmenge der Gleichung. Die Lösungsmenge wird mit L bezeichnet.

Artikel lesen

Transzendente Gleichungen

Zu den transzendenten (nicht algebraischen) Gleichungen gehören die Exponentialgleichungen, Logarithmengleichungen und trigonometrische Gleichungen. Zu den algebraischen Gleichungen zählen auch die Wurzelgleichungen.

Artikel lesen

Trigonometrische Gleichungen

Trigonometrische Gleichungen (goniometrische Gleichungen) sind solche Gleichungen, in denen die Unbekannte im Argument von Winkelfunktionen vorkommt.

Artikel lesen

Winkel an Geraden

Schneiden einander zwei Geraden, so heißen die gegenüberliegenden Winkel Scheitelwinkel und die nebeneinanderliegenden Winkel Nebenwinkel.
Schneiden zwei verschiedene parallele Geraden eine dritte Gerade, so entstehen acht Winkel. Von Interesse sind Beziehungen zwischen je zwei dieser Winkel, die keinen gemeinsamen Scheitelpunkt haben.

Artikel lesen

Winkelhalbierende im Dreieck

Die Winkelhalbierenden halbieren die drei Innenwinkel des Dreiecks. Die drei Winkelhalbierenden schneiden einander in genau einem Punkt. Dieser Punkt ist Mittelpunkt des Kreises, der die drei Dreiecksseiten von innen berührt. Man nennt deshalb diesen Kreis den Inkreis des Dreiecks.

Artikel lesen

Wissenstest - Beziehungen zwischen Figuren

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Beziehungen zwischen Figuren".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Seitennummerierung

  • Previous Page
  • Seite 12
  • Seite 13
  • Aktuelle Seite 14
  • Seite 15
  • Seite 16
  • Seite 17
  • Next Page

455 Suchergebnisse

Fächer
  • Mathematik (455)
Klassen
  • 5. Klasse (455)
  • 6. Klasse (455)
  • 7. Klasse (455)
  • 8. Klasse (455)
  • 9. Klasse (455)
  • 10. Klasse (455)
  • Oberstufe/Abitur (429)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025