Direkt zum Inhalt

93 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Eulersche Gerade

In jedem Dreieck liegen der Schnittpunkt der Mittelsenkrechten M (Umkreismittelpunkt), der Höhenschnittpunkt H und der Schnittpunkt der Seitenhalbierenden S (Schwerpunkt des Dreiecks) auf einer Geraden. Diese Gerade wird nach dem Schweizer Mathematiker LEONARD EULER (1707 bis 1783) eulersche Gerade genannt.

Artikel lesen

Spezielle Wurzelfunktion

Besonders häufig treten Funktionen mit Gleichungen der Form y = f ( x ) = x 2 = x auf. Die Funktion f ( x ) = x ist die Umkehrfunktion (inverse Funktion) zu y = g ( x ) = x 2 , jedoch nur für x ≥ 0 , da die Gleichung g ( x ) = x 2 keine umkehrbar eindeutige (eineindeutige) Zuordnung beschreibt.

Artikel lesen

Quadratische Funktionen, Nullstellen

Wir betrachten zunächst quadratische Funktionen der Form y = f ( x ) = a x 2 + b x + c .
Man erhält y = f ( x ) = x 2 + b x + c bzw. durch Umbenennung
y = f ( x ) = x 2 + p x + q ,     p ,   q ∈ ℝ .
Um den Zusammenhang zwischen den reellen Zahlen p, q und den Nullstellen der jeweiligen quadratischen Funktionen bzw. den Schnittpunkten ihrer Graphen mit der x-Achse zu erkennen, ist es zweckmäßig, eine Fallunterscheidung durchzuführen.

Artikel lesen

Winkelfunktionen am rechtwinkligen Dreieck

Bei allen zueinander ähnlichen rechtwinkligen Dreiecken sind die Quotienten aus den Längen von je zwei einander entsprechenden Seiten gleich.
Für die nebenstehend bzw. in Bild 1 dargestellten Dreiecke A 1   B 1   C 1 ,       A 1   B 2   C 2       und       A 1   B 3   C 3 , die einander ähnlich sind, gilt nach den Ähnlichkeitssätzen:
  B 1 C 1 ¯ A 1 B 1 ¯ = B 2 C 2 ¯ A 1 B 2 ¯ = B 3 C 3 ¯ A 1 B 3 ¯ A 1 C 1 ¯ A 1 B 1 ¯ = A 1 C 2 ¯ A 1 B 2 ¯ = A 1 C 3 ¯ A 1 B 3 ¯ B 1 C 1 ¯ A 1 C 1 ¯ = B 2 C 2 ¯ A 1 C 2 ¯ = B 3 C 3 ¯ A 1 C 3 ¯
Solche für zueinander ähnliche rechtwinklige Dreiecke übereinstimmenden Quotienten (Verhältnisse) werden mit Bezug auf einen der beiden nicht rechten Winkel als der Sinus, der Kosinus, der Tangens bzw. der Kotangens dieses Winkels bezeichnet.

Artikel lesen

Winkelfunktionen, Graphen und Eigenschaften

Graphen von Winkelfunktionen kann man auf die bekannte Weise unter Verwendung einer Wertetabelle zeichnen.
Es ist allerdings auch möglich, ausgehend von der Definition dieser Funktionen am Einheitskreis die zu einem Winkel als Abszisse eines Graphenpunktes gehörende Ordinate sofort aus der Zeichnung zu entnehmen. Gestützt auf diesen Weg der Konstruktion der Funktionsgraphen lassen sich einige wichtige Eigenschaften der Winkelfunktionen ermitteln.

Artikel lesen

Fakultätsschreibweise

Das Symbol n! (gesprochen: n-Fakultät) wird als abkürzende Schreibweise für das Produkt der natürlichen Zahlen von 1 bis n definiert. Insbesondere Formeln der Kombinatorik lassen sich mithilfe der Fakultätsschreibweise in rationeller Form angeben.

Artikel lesen

Goldener Schnitt

Ein besonderes Teilungsverhältnis einer Strecke heißt Goldener Schnitt bzw. stetige Teilung bei folgender Eigenschaft:
Trägt man den kürzeren auf den längeren Abschnitt ab, so wird dieser im gleichen Verhältnis geteilt wie die Ausgangsstrecke. Dies kann man nun beliebig fortsetzen, wobei das Teilungsverhältnis konstant, eben stetig, erhalten bleibt.

Artikel lesen

Permutationen

Unter einer Permutation versteht man eine Anordnung, bei der alle n Elemente verwendet (d. h. auf n Plätze verteilt) werden. Man unterscheidet Permutationen ohne und mit Wiederholung (der Elemente).

Artikel lesen

Pseudozufallszahlen

Die Simulation zufälliger Vorgänge aus der Praxis ist oft sehr mühsam und zeitaufwendig. Das gilt besonders auch für das Erzeugen von Zufallszahlen und das Arbeiten mit diesen Zahlen (ggf. unter Verwendung entsprechender Tabellen).
Heute ist es möglich, von Computern erzeugte Zufallszahlen, sogenannte Pseudozufallszahlen, zu nutzen. Grundlage für deren Erzeugung ist ein Algorithmus, der Ziffernfolgen liefert, die annähernd dieselben Eigenschaften haben wie echte Zufallszahlen.

Artikel lesen

Zentrische Streckung

Die zentrische Streckung ist eine Abbildung. Durch eine zentrische Streckung mit dem Streckungszentrum Z und dem Streckungsfaktor (Ähnlichkeitsfaktor) k wird eine Figur F in eine ähnliche überführt. Das Streckungszentrum Z ist dabei Fixpunkt, und jede Gerade durch Z ist eine Fixgerade der Abbildung.

Artikel lesen

Tangentenvieleck

Ein Vieleck, das einen Inkreis besitzen, heißt Tangentenvieleck.
Ein solches Vieleck nennt man auch umbeschriebenes Vieleck. Alle Dreiecke und alle regelmäßigen Vielecke besitzen einen Inkreis und sind Tangentenvielecke.

Artikel lesen

Regelmäßige Vielecke

Alle regelmäßigen Vielecke (n-Ecke) besitzen gleich lange Seiten und gleich große Innenwinkel und sind damit konvex.
Die Winkelsumme im n-Eck beträgt (n – 2) · 180°.
Im regelmäßigen n-Eck ist diese Winkelsumme gleichmäßig auf alle n Innenwinkel des n-Ecks verteilt.

Artikel lesen

Pyramide

Ein Körper heißt Pyramide, wenn er von einem Dreieck, Viereck, Fünfeck usw. als Grundfläche und von Dreiecken als Seitenflächen begrenzt wird, die einen Punkt S gemeinsam haben. Der Punkt S heißt Spitze der Pyramide. Der Abstand der Spitze der Pyramide von der Grundfläche heißt Höhe der Pyramide. Der Fußpunkt der Höhe ist der Fußpunkt des Lotes von der Spitze in die Grundfläche. Die Kanten der Grundfläche nennt man Grundkanten, die Kanten der Seitenfläche heißen Seitenkanten.

Artikel lesen

Pyramidenstumpf

Wird eine Pyramide durch eine zur Grundfläche der Pyramide parallele Ebene geschnitten, so entstehen ein Pyramidenstumpf und die zugehörige Ergänzungspyramide.

Artikel lesen

Prisma

Ein Körper heißt gerades Prisma, wenn er von zwei zueinander kongruenten und parallelen n-Ecken und von n Rechtecken begrenzt wird. Die n-Ecke heißen Grundfläche und Deckfläche des Prismas. Der Abstand zwischen Grund- und Deckfläche ist die Höhe des Prismas.

Artikel lesen

Kreiskegel

Werden alle Punkte eines Kreises mit einem Punkt S außerhalb der Kreisebene verbunden, so schließen diese Strecken gemeinsam mit dem Kreis einen Körper ein, der Kreiskegel genannt wird. Er hat einen Kreis als ebene Grundfläche und eine gekrümmte Mantelfläche.

Artikel lesen

Kreiszylinder

Einen Körper mit zwei zueinander kongruenten und parallelen Kreisen als Grund- und Deckfläche nennt man Kreiszylinder. Liegen die Mittelpunkte der Kreisflächen des Zylinders senkrecht übereinander, so handelt es sich um einen geraden Kreiszylinder. Man kann sich einen geraden Kreiszylinder auch durch Rotation eines Rechtecks um eine seiner Seiten entstanden vorstellen.

Artikel lesen

Kugel

Die Kugel ist die Menge aller Punkte des Raums, die von einem festen Punkt M, dem Mittelpunkt der Kugel, den gleichen Abstand r haben. Der Abstand heißt Radius der Kugel.

Artikel lesen

Kugelteile

Wird eine Kugel durch eine Ebene oder mehrere Ebenen geschnitten, so entstehen verschiedene Schnittfiguren.
Beim Schnitt einer Kugel durch eine Ebene entstehen zwei Kugelabschnitte (Kugelsegmente). Verläuft diese Schnittebene genau durch den Kugelmittelpunkt, entstehen zwei Halbkugeln.

Artikel lesen

Winkelhalbierende im Dreieck

Die Winkelhalbierenden halbieren die drei Innenwinkel des Dreiecks. Die drei Winkelhalbierenden schneiden einander in genau einem Punkt. Dieser Punkt ist Mittelpunkt des Kreises, der die drei Dreiecksseiten von innen berührt. Man nennt deshalb diesen Kreis den Inkreis des Dreiecks.

Artikel lesen

Quader

Ein Quader ist ein gerades Prisma mit paarweise zueinander kongruenten Rechtecksflächen. Ein Quader hat sechs Begrenzungsflächen, zwölf Kanten und acht Ecken.

Artikel lesen

Kegelstumpf

Wird ein gerader Kreiskegel von einer parallel zu Grundfläche verlaufenden Ebene geschnitten, so entsteht ein gerader Kegelstumpf. Die parallelen Flächen A G und A D sind zueinander ähnliche Kreise.

Artikel lesen

Kombinationen

Zu den typischen kombinatorischen Fragestellungen gehören solche, bei denen Zusammenstellungen von k aus n Elementen betrachtet werden, also eine Auswahl vorgenommen wird.
Werden dabei alle möglichen Reihenfolgen der Elemente betrachtet und unterschieden, so spricht man von Variationen, wird die Reihenfolge nicht berücksichtigt von Kombinationen.
(Der Begriff Kombination wird mitunter auch als Oberbegriff für Variation und Kombination verwendet.)

Artikel lesen

Glockenförmige Häufigkeitsverteilung

Grafische Darstellungen von Häufigkeitsverteilungen sind oft symmetrisch und lassen für den Fall, dass die Anzahl der Beobachtungsergebnisse nicht zu gering ist, eine annähernd glockenförmige Gestalt erkennen. Lage und Form der „Glocke“ werden durch den Mittelwert x ¯ bzw. die Standardabweichung s bestimmt.

Artikel lesen

Würfel, allgemein

Ein Würfel besitzt sechs zueinander kongruente Quadrate als Begrenzungsflächen, die paarweise zueinander parallel liegen. Zur Berechnung des Oberflächeninhalts und des Volumens reicht daher zum Beispiel die Angabe der Länge der Körperkante des Würfels.

Seitennummerierung

  • Previous Page
  • Seite 1
  • Seite 2
  • Aktuelle Seite 3
  • Seite 4
  • Next Page

93 Suchergebnisse

Fächer
  • Mathematik (93)
Klassen
  • 5. Klasse (93)
  • 6. Klasse (93)
  • 7. Klasse (93)
  • 8. Klasse (93)
  • 9. Klasse (93)
  • 10. Klasse (93)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2026