Direkt zum Inhalt

181 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Lorentz-Kraft

Auf alle geladenen Teilchen oder Körper, die sich in einem magnetischen Feld nicht parallel zu den magnetischen Feldlinien bewegen, wirkt eine Kraft. Diese Kraft bezeichnet man nach dem niederländischen Physiker HENDRIK LORENTZ (1853-1928), der sie gegen Ende des 19. Jahrhunderts näher untersucht hat, als LORENTZ-Kraft.
Berechnungen zur LORENTZ-Kraft sind mitunter recht kompliziert, weil diese Kraft als vektorielle Größe sowohl von der Bewegungsrichtung und dem Betrag der Teilchengeschwindigkeit als auch von der Stärke und Richtung des Magnetfeldes abhängt. Allgemein gilt:
F → = Q ⋅ ( v → × B → )
Für den Sonderfall, dass Bewegungsrichtung und magnetische Feldlinien senkrecht zueinander stehen, kann man den Betrag der LORENTZ-Kraft relativ einfach experimentell untersuchen und berechnen.

Artikel lesen

Addition von Geschwindigkeiten

Während sich in der klassischen Physik bei gleich gerichteten Bewegungen die Beträge der Geschwindigkeiten addieren, gilt für die relativistische Addition von Geschwindigkeiten ein etwa komplizierterer Zusammenhang:
u = u ' + v 1 + u ' ⋅ v c 2
Die resultierende Geschwindigkeit ist entsprechend einer Grundaussage der speziellen Relativitätstheorie immer kleiner als die Vakuumlichtgeschwindigkeit.

Artikel lesen

Äquivalenz von Masse und Energie

ALBERT EINSTEIN formulierte in seiner berühmten Arbeit zur speziellen Relativitätstheorie im Jahre 1905: „Die Masse eines Körpers ist ein Maß für dessen Energiegehalt“. Er stellte fest, dass Masse und Energie äquivalente Größen sind und zwischen diesen Größen der fundamentale Zusammenhang E = m ⋅ c 2 existiert. Diese Gleichung ist die Grundlage für das Verständnis der Energiefreisetzung durch Kernspaltung und Kernfusion sowie vieler weiterer physikalischer Prozesse.

Artikel lesen

Akustischer und optischer DOPPLER-Effekt

Der österreichische Physiker CHRISTIAN DOPPLER (1803-1853) entdeckte 1842, dass zwischen der von einem Beobachter wahrgenommenen Tonfrequenz und der Bewegung einer Schallquelle ein Zusammenhang besteht. Dieser Effekt wird als akustischer DOPPLER-Effekt bezeichnet.
Ein analoger Effekt tritt bei Licht auf. Er wird optischer oder relativistischer DOPPLER-Effekt genannt.

Artikel lesen

Erhaltungssätze in der speziellen Relativitätstheorie

In der klassischen Physik gilt für abgeschlossene Systeme neben dem Gesetz von der Erhaltung der Masse der Energieerhaltungssatz und der Impulserhaltungssatz.
Aus relativistischer Sicht ergibt sich: Aufgrund der Äquivalenz von Masse und Energie umfasst der Energieerhaltungssatz auch das Gesetz von der Erhaltung der Masse. Auch Impulserhaltungssatz und Energieerhaltungssatz sind miteinander verknüpft.

Artikel lesen

Längenkontraktion

In der klassischen Physik hat die Länge eines Körpers und damit der Abstand zweier Punkte einen bestimmten, stets gleichen Wert. In der Relativitätstheorie dagegen zeigt sich, dass die Länge eines Körpers vom Bezugssystem abhängig ist. Längenkontraktion bedeutet:
In seinem Ruhesystem hat ein Körper seine größte Länge, die Eigenlänge. In einem dazu bewegten System ist die Länge um den Faktor 1 / k = 1 − v 2 / c 2 (Kehrwert des LORENTZ-Faktors) geringer.

Artikel lesen

LORENTZ-Transformation

Im Zusammenhang mit der Entwicklung seiner Elektronentheorie beschäftigte sich der niederländische Physiker HENDRIK ANTOON LORENTZ auch mit der Elektrodynamik bewegter Körper und mit der Deutung des MICHELSON-MORLEY-Experiments. Er entwickelte 1895 auf der Grundlage der klassischen Vorstellungen Gleichungen, die es ermöglichten, die räumlichen und zeitlichen Koordinaten von einem Inertialsystem in ein anderes umzurechnen. Diese Gleichungen werden als LORENTZ-Transformationsgleichungen oder als LORENTZ-Transformation bezeichnet. Die richtige physikalische Deutung erhielten sie 10 Jahre später durch ALBERT EINSTEIN in seiner speziellen Relativitätstheorie.

Artikel lesen

Ruheenergie und Gesamtenergie

In der klassischen Physik setzt sich die Energie eines Körpers additiv aus den Energieformen zusammen, die er hat. Masse und Energie sind voneinander unabhängige Größen.
In relativistischer Betrachtungsweise spielt wegen der Äquivalenz von Masse und Energie die Masse des Körpers für die ihm zuzuordnende Energie eine wichtige Rolle. Dabei ist zwischen seiner Ruheenergie und seiner Gesamtenergie zu unterscheiden.

Artikel lesen

Zeitdilatation

In der klassischen Physik wird von einer absoluten Zeit ausgegangen, die überall gleichmäßig verläuft. In der speziellen Relativitätstheorie dagegen ist der Zeitbegriff zu relativieren. Die Zeit ist nicht absolut, sondern es gilt vielmehr: Eine bewegte Uhr geht langsamer als eine ruhende Uhr. Ein physikalischer Vorgang dauert in seinem Ruhesystem nicht so lange wie der gleiche Vorgang in einem dazu bewegten System. Diese Erscheinung wird als Zeitdilatation bezeichnet.

Artikel lesen

Zwillingsparadoxon

Die Relativität der Zeitmessung wird häufig am Beispiel von Zwillingen diskutiert, die sich in zueinander bewegten Inertialsystemen befinden und wegen der Zeitdilatation unterschiedlich schnell altern. Bezeichnet wird diese Erscheinung als Zwillingsparadoxon.

Artikel lesen

Parallelschaltung von Wechselstromwiderständen

Unter Wechselstromwiderständen versteht man ohmsche, induktive und kapazitive Widerstände. Für die Parallelschaltung solcher Widerstände gelten im Wechselstromkreis andere Gesetze als für Widerstände im Gleichstromkreis. Der Gesamtwiderstand Z, der auch als Scheinwiderstand bezeichnet wird, kann bei Parallelschaltung von Wechselstromwiderständen berechnet werden mit der Gleichung:

1 Z = 1 R 2 + ( 1 X C − 1 X L ) 2 oder 1 Z = 1 R 2 + ( ω ⋅ C − 1 ω ⋅ L ) 2

Artikel lesen

Reihenschaltung von Wechselstromwiderständen

Unter Wechselstromwiderständen versteht man ohmsche, induktive und kapazitive Widerstände. Für die Reihenschaltung solcher Widerstände gelten im Wechselstromkreis andere Gesetze als für Widerstände im Gleichstromkreis. Der Gesamtwiderstand Z, der auch als Scheinwiderstand bezeichnet wird, kann bei Reihenschaltung von Wechselstromwiderständen berechnet werden mit der Gleichung:

Z = R 2 + ( X L − X C ) 2 oder Z = R 2 + ( ω ⋅ L − 1 ω ⋅ C ) 2

Für die Spannungsverteilung gilt, dass die Summe der Teilspannungen größer ist als die Spannung der anliegenden Spannungsquelle.

Artikel lesen

Selbstinduktion und Induktivität

Eine stromdurchflossene Spule wird von einem Magnetfeld durchsetzt und ist auch von diesem Feld umgeben. Bei konstanter Stromstärke ist dieses Feld zeitlich konstant. Verändert sich die Stromstärke, so verändert sich auch die Stärke des Magnetfeldes, das von der Spule umschlossen wird. Damit wird nach dem Induktionsgesetz in der felderzeugenden Spule selbst eine Spannung induziert. Diese Erscheinung wird als Selbstinduktion, die entstehende Spannung als Selbstinduktionsspannung bezeichnet. Der Bau der Spule, der für den Betrag der Induktionsspannung eine erhebliche Rolle spielt, wird durch die Größe Induktivität charakterisiert.

Artikel lesen

Transformatoren

Transformatoren oder Umformer werden verwendet, um elektrische Energie eines Wechselstromes von einem Primärstromkreis auf einen Sekundärstromkreis zu übertragen. Bei dieser Übertragung kann man die Werte für die Spannungen und die Stromstärken verändern. Das Funktionsprinzip von Transformatoren beruht auf der elektromagnetischen Induktion, wobei die eine Spule als felderzeugende Spule und die andere als Induktionsspule dient.
Für die praktische Anwendung wesentlich ist die Anpassung eines Transformators an die jeweilige Belastung. In der Technik gibt es auch eine Reihe von speziellen Transformatoren, zu denen beispielsweise Netzgeräte oder Zündspulen gehören.

Artikel lesen

Wechselspannung und Wechselstrom

Während bei einer Gleichspannung immer die gleiche Polarität und damit bei einem Gleichstrom die gleiche Flussrichtung vorliegt, wird eine Spannung, deren Polarität sich periodisch ändert, als Wechselspannung bezeichnet. Entsprechend ändert sich die Flussrichtung des Wechselstromes periodisch. Spannung und Stromstärke müssen nicht unbedingt den zeitlichen Verlauf einer Sinusfunktion besitzen. Allerdings ist sinusförmige Wechselstrom technisch am weitesten verbreitet, da er bei der Stromgewinnung in Wechselstromgeneratoren entsteht. Er lässt sich auch mathematisch relativ einfach beschreiben.
Bei Wechselspannungen bzw. Wechselströmen gibt man in der Regel die Effektivwerte für Spannung und Stromstärke an. Sie unterscheiden sich von den mittleren Werten und von den Maximalwerten.

Artikel lesen

Ohmsche, induktive und kapazitive Widerstände im Wechselstromkreis

Unter einem Wechselstromkreis versteht man einen Stromkreis, in dem sich die Polarität der elektrischen Quelle periodisch so ändert, dass sich auch die Flussrichtung periodisch ändert. Wir beschränken uns auf die Betrachtung von sinusförmigem Wechselstrom. Wie im Gleichstromkreis bilden auch im Wechselstromkreis ohmsche Widerstände ein Hindernis für den Strom, also einen elektrischen Widerstand. Darüber hinaus verhalten sich im Wechselstromkreis auch Kondensatoren und Spulen wie elektrische Widerstände. Den Widerstand eines Kondensators bezeichnet man als kapazitiven Widerstand, den einer Spule als induktiven Widerstand. Alle drei Arten von Widerständen im Wechselstromkreis werden als Wechselstromwiderstände bezeichnet. Sie weisen jeweils Besonderheiten auf, die in dem Beitrag ausführlich dargestellt sind.

Artikel lesen

Widerstände in Stromkreisen

Der elektrische Widerstand eines Bauelementes oder Gerätes gibt an, welche Spannung für einen elektrischen Strom der Stärke 1 A erforderlich ist. Er wird in der Einheit Ohm ( 1 Ω ) gemessen.
Befinden sich in einem Stromkreis mit einer elektrischen Quelle mehrere Bauelemente (Widerstände, Glühlampen, Spulen, ...), so können diese in Reihe oder parallel zueinander geschaltet sein. Der Gesamtwiderstand der Schaltung hängt von der Art der Schaltung und vom elektrischen Widerstand der betreffenden Bauelemente ab.

Artikel lesen

Elektrischer Widerstand

Der elektrische Widerstand eines Bauteils gibt an, wie stark der elektrische Strom in ihm behindert wird.

Formelzeichen:
Einheit:
R
ein Ohm (1 Ω )

Definiert ist der elektrische Widerstand als der Quotient aus elektrischer Spannung und elektrischer Stromstärke:

R = U I U Spannung am Bauteil I Stromstärke durch das Bauteil

Diese Gleichung wird auch als ohmsches Gesetz bezeichnet.

Artikel lesen

Rekursive Definitionen spezieller Zahlenfolgen

Eine Möglichkeit der Darstellung einer Zahlenfolge ist die Angabe einer rekursive Bildungsvorschrift.
Eine rekursive Bildungsvorschrift gibt an, wie man ein beliebiges Glied a n   +1 einer Zahlenfolge aus seinem Vorgänger a n oder auch aus mehreren Vorgängern a n ,       a n   −   1 usw. gewinnen kann und wie das Anfangsglied a 1 (und ggf. auch noch darauf folgende Glieder) der Folge lautet (lauten).
Beispiel für rekursiv definierte Folgen sind die FIBONACCI-Folge und die sogenannte ( 3 n + 1 ) -Folge (ULAM-Folge).

Artikel lesen

Wurzelfunktionen

Funktionen mit Gleichungen der Form   y = f ( x ) = x m n   ( x ≥ 0 ;       m ,   n ∈ ℕ ;     m ≥ 1 ;     n ≥ 2 )
heißen Wurzelfunktionen.

Artikel lesen

Gleichungen mit absoluten Beträgen

Gleichungen, bei denen von der Variablen (Unbekannten) direkt oder indirekt der absolute Betrag angegeben ist, sind weder der Gruppe der algebraischen Gleichungen noch der Gruppe der transzendenten Gleichungen zuzuordnen.
Beim Lösen von Gleichungen mit Beträgen sind Fallunterscheidungen vornehmen.
Dies wird für lineare und quadratische Gleichungen demonstriert.

Artikel lesen

Lösen von Exponentialgleichungen

Eine Gleichung nennt man Exponentialgleichung, wenn mindestens ein freie Variable (Unbekannte) als Exponent auftritt.
Exponentialgleichungen können durch Exponentenvergleich, durch Logarithmieren bzw. auf grafischem Wege gelöst werden.

Artikel lesen

Logarithmusgleichungen

Eine Gleichung nennt man Logarithmengleichung, wenn mindestens eine freie Variable (Unbekannte) als Logarithmus (zu einer beliebigen Basis a) auftritt.

Artikel lesen

Lösbarkeitskriterien für inhomogene lineare Gleichungssysteme

Ein inhomogenes lineares Gleichungssystem besitzt nur dann Lösungen, wenn der Rang der Koeffizientenmatrix gleich dem Rang der erweiterten Koeffizientenmatrix ist. Ist dieser gleich der Anzahl der Variablen, so existiert genau eine Lösung; ist er kleiner als die Anzahl der Variablen, dann existieren unendlich viele Lösungen.
Ist der Rang der Koeffizientenmatrix kleiner als der Rang der erweiterten Koeffizientenmatrix, dann besitzt das Gleichungssystem keine Lösung.

Artikel lesen

Cramersche Regel

Lineare Gleichungssysteme können mithilfe von Determinanten gelöst werden. Eine entsprechende Regel dazu entwickelte der Schweizer Mathematiker GABRIEL CRAMER (1704 bis 1752).

Seitennummerierung

  • Previous Page
  • Seite 3
  • Seite 4
  • Seite 5
  • Seite 6
  • Aktuelle Seite 7
  • Seite 8
  • Next Page

181 Suchergebnisse

Fächer
  • Biologie (2)
  • Chemie (23)
  • Mathematik (17)
  • Physik (139)
Klassen
  • 5. Klasse (132)
  • 6. Klasse (132)
  • 7. Klasse (132)
  • 8. Klasse (132)
  • 9. Klasse (132)
  • 10. Klasse (132)
  • Oberstufe/Abitur (181)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2026