Direkt zum Inhalt

261 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Reihenschaltung von Wechselstromwiderständen

Unter Wechselstromwiderständen versteht man ohmsche, induktive und kapazitive Widerstände. Für die Reihenschaltung solcher Widerstände gelten im Wechselstromkreis andere Gesetze als für Widerstände im Gleichstromkreis. Der Gesamtwiderstand Z, der auch als Scheinwiderstand bezeichnet wird, kann bei Reihenschaltung von Wechselstromwiderständen berechnet werden mit der Gleichung:

Z = R 2 + ( X L − X C ) 2 oder Z = R 2 + ( ω ⋅ L − 1 ω ⋅ C ) 2

Für die Spannungsverteilung gilt, dass die Summe der Teilspannungen größer ist als die Spannung der anliegenden Spannungsquelle.

Artikel lesen

Selbstinduktion und Induktivität

Eine stromdurchflossene Spule wird von einem Magnetfeld durchsetzt und ist auch von diesem Feld umgeben. Bei konstanter Stromstärke ist dieses Feld zeitlich konstant. Verändert sich die Stromstärke, so verändert sich auch die Stärke des Magnetfeldes, das von der Spule umschlossen wird. Damit wird nach dem Induktionsgesetz in der felderzeugenden Spule selbst eine Spannung induziert. Diese Erscheinung wird als Selbstinduktion, die entstehende Spannung als Selbstinduktionsspannung bezeichnet. Der Bau der Spule, der für den Betrag der Induktionsspannung eine erhebliche Rolle spielt, wird durch die Größe Induktivität charakterisiert.

Artikel lesen

Transformatoren

Transformatoren oder Umformer werden verwendet, um elektrische Energie eines Wechselstromes von einem Primärstromkreis auf einen Sekundärstromkreis zu übertragen. Bei dieser Übertragung kann man die Werte für die Spannungen und die Stromstärken verändern. Das Funktionsprinzip von Transformatoren beruht auf der elektromagnetischen Induktion, wobei die eine Spule als felderzeugende Spule und die andere als Induktionsspule dient.
Für die praktische Anwendung wesentlich ist die Anpassung eines Transformators an die jeweilige Belastung. In der Technik gibt es auch eine Reihe von speziellen Transformatoren, zu denen beispielsweise Netzgeräte oder Zündspulen gehören.

Artikel lesen

Wechselspannung und Wechselstrom

Während bei einer Gleichspannung immer die gleiche Polarität und damit bei einem Gleichstrom die gleiche Flussrichtung vorliegt, wird eine Spannung, deren Polarität sich periodisch ändert, als Wechselspannung bezeichnet. Entsprechend ändert sich die Flussrichtung des Wechselstromes periodisch. Spannung und Stromstärke müssen nicht unbedingt den zeitlichen Verlauf einer Sinusfunktion besitzen. Allerdings ist sinusförmige Wechselstrom technisch am weitesten verbreitet, da er bei der Stromgewinnung in Wechselstromgeneratoren entsteht. Er lässt sich auch mathematisch relativ einfach beschreiben.
Bei Wechselspannungen bzw. Wechselströmen gibt man in der Regel die Effektivwerte für Spannung und Stromstärke an. Sie unterscheiden sich von den mittleren Werten und von den Maximalwerten.

Artikel lesen

Ohmsche, induktive und kapazitive Widerstände im Wechselstromkreis

Unter einem Wechselstromkreis versteht man einen Stromkreis, in dem sich die Polarität der elektrischen Quelle periodisch so ändert, dass sich auch die Flussrichtung periodisch ändert. Wir beschränken uns auf die Betrachtung von sinusförmigem Wechselstrom. Wie im Gleichstromkreis bilden auch im Wechselstromkreis ohmsche Widerstände ein Hindernis für den Strom, also einen elektrischen Widerstand. Darüber hinaus verhalten sich im Wechselstromkreis auch Kondensatoren und Spulen wie elektrische Widerstände. Den Widerstand eines Kondensators bezeichnet man als kapazitiven Widerstand, den einer Spule als induktiven Widerstand. Alle drei Arten von Widerständen im Wechselstromkreis werden als Wechselstromwiderstände bezeichnet. Sie weisen jeweils Besonderheiten auf, die in dem Beitrag ausführlich dargestellt sind.

Artikel lesen

Widerstände in Stromkreisen

Der elektrische Widerstand eines Bauelementes oder Gerätes gibt an, welche Spannung für einen elektrischen Strom der Stärke 1 A erforderlich ist. Er wird in der Einheit Ohm ( 1 Ω ) gemessen.
Befinden sich in einem Stromkreis mit einer elektrischen Quelle mehrere Bauelemente (Widerstände, Glühlampen, Spulen, ...), so können diese in Reihe oder parallel zueinander geschaltet sein. Der Gesamtwiderstand der Schaltung hängt von der Art der Schaltung und vom elektrischen Widerstand der betreffenden Bauelemente ab.

Artikel lesen

Elektrischer Widerstand

Der elektrische Widerstand eines Bauteils gibt an, wie stark der elektrische Strom in ihm behindert wird.

Formelzeichen:
Einheit:
R
ein Ohm (1 Ω )

Definiert ist der elektrische Widerstand als der Quotient aus elektrischer Spannung und elektrischer Stromstärke:

R = U I U Spannung am Bauteil I Stromstärke durch das Bauteil

Diese Gleichung wird auch als ohmsches Gesetz bezeichnet.

Artikel lesen

Rekursive Definitionen spezieller Zahlenfolgen

Eine Möglichkeit der Darstellung einer Zahlenfolge ist die Angabe einer rekursive Bildungsvorschrift.
Eine rekursive Bildungsvorschrift gibt an, wie man ein beliebiges Glied a n   +1 einer Zahlenfolge aus seinem Vorgänger a n oder auch aus mehreren Vorgängern a n ,       a n   −   1 usw. gewinnen kann und wie das Anfangsglied a 1 (und ggf. auch noch darauf folgende Glieder) der Folge lautet (lauten).
Beispiel für rekursiv definierte Folgen sind die FIBONACCI-Folge und die sogenannte ( 3 n + 1 ) -Folge (ULAM-Folge).

Artikel lesen

Funktionen mit der Gleichung y = f(x) = mx + n

Eine Funktion f mit einer Gleichung der Form
  y = f ( x ) = m x + n   ( m ,   n ∈ ℝ )
oder einer Gleichung, die durch äquivalentes Umformen in diese Form überführt werden kann, heißt lineare Funktion.
Für lineare Funktionen ist der Definitionsbereich im Allgemeinen die Menge der reellen Zahlen (so nicht das mathematische oder das entsprechenden Anwendungsproblem einen Einschränkung verlangt), was dann auch für den Wertebereich ( m ,   n ≠ 0 ) gilt. Die Zahlen m und n sind Parameter.

Artikel lesen

Inverse Funktion (Umkehrfunktion)

Eine Funktion heißt umkehrbar eindeutige (eineindeutige) Funktion, wenn nicht nur jedem Argument eindeutig ein Funktionswert zugeordnet ist, sondern auch umgekehrt zu jedem Funktionswert genau ein Argument gehört.

Artikel lesen

Monotonie von Funktionen

Graphen von Funktionen können in bestimmten Intervallen steigen, fallen oder parallel zur x-Achse verlaufen.

Artikel lesen

Logarithmusfunktionen

Funktionen mit Gleichungen der Form y = f ( x ) = log a   x   ( a ,   x ∈ ℝ ;       a ,   x > 0;       a ≠ 1 )
heißen Logarithmusfunktionen.
Von besonderer Bedeutung sind die Logarithmusfunktionen mit den Basen 10 und 2 sowie der eulerschen Zahl e.

Artikel lesen

Nullstellen ganzrationaler Funktionen (dritten und höheren Grades)

Allgemein versteht man unter einer Nullstelle einer Funktion f diejenige Zahl x 0 ∈ D f , für die f ( x 0 ) = 0 gilt. Nullstellen zu berechnen heißt demnach, alle Lösungen der Gleichung f ( x ) = 0 zu ermitteln.
Diese kann man rechnerisch durch Anwenden der äquivalenten Umformungsregeln, Verwenden von Lösungsformeln u.a. sowie Anwenden von Näherungsverfahren  bestimmen.

Artikel lesen

Nullstellen gebrochenrationaler Funktionen

Nullstellen einer gebrochenrationalen Funktion sind alle Nullstellen der ganzrationalen Zählerfunktion, die nicht gleichzeitig Nullstellen der Nennerfunktion sind. Damit ist das Bestimmen der Nullstellen gebrochenrationaler Funktionen auf die Nullstellenermittlung ganzrationaler Funktionen zurückgeführt.

Artikel lesen

Nullstellen von Wurzelfunktionen sowie Exponential- und Logarithmusfunktionen

Wurzelfunktionen sowie Exponential- und Logarithmusfunktionen gehören zur Klasse der nichtrationalen Funktionen. Zum Bestimmen der Nullstellen jener Funktionen untersucht man, an welchen Stellen f ( x ) = 0 gilt.
Dabei ist der jeweilige Definitionsbereich der Funktion zu beachten.
Die Graphen der „reinen“ Exponentialfunktionen der Form f ( x ) = a x       ( mit       a ,   c ,   x ∈ ℝ ;       a > 0 ;       a ≠ 1 ) verlaufen stets oberhalb der x-Achse und schneiden die y-Achse im Punkte ( 0 ;     1 ) , sie besitzen keine Nullstellen.
Alle „reinen“ Logarithmusfunktionen (als Umkehrfunktionen der Exponentialfunktionen zur gleichen Basis) besitzen eine Nullstelle für x 0 = 1 .

Artikel lesen

Nullstellen trigonometrischer Funktionen

Viele periodische Vorgänge lassen sich durch Funktionen der Form f ( x ) = a ⋅ sin ( b ⋅ ( x − c ) ) beschreiben. Deren Graphen entstehen aus dem Graphen der Sinusfunktion durch Streckung (Stauchung) in Richtung der Koordinatenachsen und Verschiebung in Richtung der x-Achse, woraus sich Schlussfolgerungen für die Nullstellen ziehen lassen.
Für mit anderen Funktionen verkettete Sinus- und Kosinusfunktionen führt das Bestimmen der Nullstellen auf das Lösen goniometrischer Gleichungen.

Artikel lesen

Potenzfunktionen

Unter Potenzfunktionen werden Funktionen mit Gleichungen der folgenden Form verstanden:
  y = f ( x ) = x n     ( x ∈ ℝ ;       n ∈ ℤ \ { 0 } )
Ihre Graphen nennt man Parabeln ( n > 0 ) bzw. Hyperbeln ( n < 0 ) n-ter Ordnung.

Artikel lesen

Streckung, Stauchung und Spiegelung von Graphen quadratischer Funktionen

Der Graph einer quadratischen Funktion mit der Gleichung y = f   ( x ) = a x 2 + b x + c ist für a = 1 eine (ggf. verschobene) Normalparabel.
Für a ≠ 1 erhalten wir als Graph im Vergleich zum Graphen von y = f   ( x ) = x 2 + b x + c eine (in y-Richtung) gestreckte bzw. gestauchte und gegebenenfalls an der x-Achse gespiegelte Parabel.

Artikel lesen

Winkelfunktionen

Die bezüglich eines rechtwinkligen Dreiecks formulierten Definitionen des Sinus und des Kosinus (wie auch des Tangens und des Kotangens) eines Winkels können auf einen beliebigen Kreis oder speziell auch auf einen Einheitskreis (also einen Kreis mit dem Radius r = 1 Längeneinheit) übertragen werden.

Artikel lesen

Beziehungen zwischen Winkeln und Seiten am rechtwinkligen Dreieck (Winkelfunktionen)

Bei allen zueinander ähnlichen rechtwinkligen Dreiecken sind die Quotienten aus den Längen von je zwei einander entsprechenden Seiten gleich.

Artikel lesen

Graphen und Eigenschaften von Winkelfunktionen

Graphen von Winkelfunktionen kann man auf die bekannte Weise unter Verwendung einer Wertetabelle zeichnen. Es ist allerdings auch möglich, ausgehend von der Definition dieser Funktionen am Einheitskreis die zu einem Winkel als Abszisse eines Graphenpunktes gehörende Ordinate sofort aus der Zeichnung zu entnehmen. Aus der Konstruktion der Funktionsgraphen lassen sich einige wichtige Eigenschaften der entsprechenden Winkelfunktionen schlussfolgern.

Artikel lesen

Wurzelfunktionen

Funktionen mit Gleichungen der Form   y = f ( x ) = x m n   ( x ≥ 0 ;       m ,   n ∈ ℕ ;     m ≥ 1 ;     n ≥ 2 )
heißen Wurzelfunktionen.

Artikel lesen

Anwendung transzendenter Funktionen bei der Zinseszinsrechnung

Wird ein festes Kapital K mehrere Jahre verzinst, ohne dass die Zinsen am Jahresende abgehoben werden, so werden auch die jeweils angefallen Zinsen mit verzinst. Man spricht in diesem Fall von der sogenannten Zinseszinsrechnung. Diese stellt eine wichtige Anwendung transzendenter Funktionen dar.

Artikel lesen

Zwei- und dreireihige Determinanten

Die Determinante (Bestimmende) ist eine Funktion, die jeder quadratischen Matrix (n Zeilen und n Spalten) eine reelle Zahl zuordnet (interaktives Rechenbeispiel). Sie kann also als eine Funktion von n 2 Variablen aufgefasst werden und besteht aus Summanden, die Produkte aus den einzelnen Matrixelementen sind.
Der Wert einer Determinante kann mithilfe des Entwicklungssatzes von LAPLACE (über Unterdeterminanten) berechnet werden.
Ein Hilfsmittel für die Berechnung speziell dreireihiger Determinaten ist die Regel von SARRUS.

Artikel lesen

Gaußsches Eliminierungsverfahren (Gauß-Algorithmus)

Das auf CARL FRIEDRICH GAUSS (1777 bis 1855) zurückgehende Verfahren beruht auf dem Additions- bzw. Subtraktionsverfahren (Verfahren der gleichen Koeffizienten).
Die Lösungsstrategie besteht in der äquivalenten Umformung des gegebenen Gleichungssystems mit mehreren Variablen (Unbekannten) in eine Gleichung mit nur einer Unbekannten.

Seitennummerierung

  • Previous Page
  • Seite 6
  • Seite 7
  • Seite 8
  • Aktuelle Seite 9
  • Seite 10
  • Seite 11
  • Next Page

261 Suchergebnisse

Fächer
  • Chemie (2)
  • Kunst (1)
  • Mathematik (117)
  • Physik (140)
  • Politik/Wirtschaft (1)
Klassen
  • 5. Klasse (21)
  • 6. Klasse (21)
  • 7. Klasse (21)
  • 8. Klasse (21)
  • 9. Klasse (21)
  • 10. Klasse (21)
  • Oberstufe/Abitur (242)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2026