Direkt zum Inhalt

455 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Geraden am Kreis


Geraden und Kreise können verschiedene Lagen zueinander haben:

  • Eine Gerade, die den Kreis in zwei Punkten schneidet, heißt Sekante (Schneidende). Eine Sekante, die durch den Mittelpunkt des Kreises verläuft, nennt man Zentrale.
  • Die Strecke zwischen den Punkten A und B ist eine Sehne des Kreises. Die längste Sehne im Kreis ist der Durchmesser d.
  • Eine Gerade, die den Kreis in einem Punkt berührt, heißt Tangente (Berührende).
  • Eine Gerade, die den Kreis in keinem Punkt schneidet, heißt Passante (Vorbeigehende).
Artikel lesen

Winkel am Kreis

Ein Winkel heißt Mittelpunktswinkel (Zentriwinkel), wenn sein Scheitel im Kreismittelpunkt liegt, Umfangswinkel (Peripheriewinkel), wenn sein Scheitel auf dem Kreis liegt und seine Schenkel den Kreis schneiden, Sehnen-Tangenten-Winkel, wenn sein Scheitel auf dem Kreis liegt und ein Schenkel den Kreis schneidet, der andere den Kreis berührt.

Artikel lesen

Kreiszahl

Der Umfang eines Kreises ist proportional zu seinem Durchmesser.
Der Proportionalitätsfaktor heißt Kreiszahl und wird mit dem griechischen Buchstaben π (gesprochen: pi) bezeichnet.

Artikel lesen

Georg Cantor

GEORG CANTOR (1845 bis 1918), deutscher Mathematiker
* 3. März 1845 St. Petersburg
† 6. Januar 1918 Halle

GEORG CANTOR verfasste u. a. Abhandlungen zur Mengenlehre und schuf damit die Grundlagen einer neuen mathematischen Theorie, die die gesamte Mathematik entscheidend beeinflusste.

Artikel lesen

Landvermessung, Anfänge

Die babylonischen und ägyptischen Überlegungen in der Geometrie dienten zur Lösung praktischer Probleme. Die ersten Menschen vor der Antike, die sich mit der Geometrie beschäftigten, waren wohl die Landmesser Ägyptens. Die Griechen gaben ihnen den Namen Harpedonapten (Schnurspanner).
Durch Spannen von geknoteten Schnüren konnten die ägyptischen Landmesser auf dem Erdboden Geraden, Kreise und Winkel abstecken.

Artikel lesen

Länge

Können zwei Strecken mit einer Bewegung aufeinander abgebildet werden, sind sie deckungsgleich und damit gleich lang.
Beim Messen der Länge einer Strecke wird ermittelt, wie oft man eine Einheitsstrecke auf der zu messenden Strecke lückenlos hintereinanderlegen kann. Die Streckenlänge wird als Produkt aus Zahlenwert und Einheit angegeben.

Artikel lesen

Historische Maße

Man bestimmte Längen nach menschlichen Körperteilen, wofür z. B. die Maße Elle oder Fuß stehen. Für die Einheit Elle gab es allein in Deutschland 132 verschiedene Maßangaben.
Flächen bestimmte man zunächst nach einer gewissen Arbeitsleistung, worauf z. B. Einheiten hinweisen wie Tagwerk, Joch oder Morgen. Charakteristisch ist die regionale Unterschiedlichkeit der Maße.

Artikel lesen

Maßstab

Das Verhältnis einer Vergrößerung oder Verkleinerung nennt man Maßstab. Die erste Zahl des Maßstabes bezieht sich auf das Bild und zweite auf das Original. Ist die erste Zahl des Maßstabes größer als die zweite, handelt es sich um eine Vergrößerung. Ist die erste Zahl kleiner als die zweite, handelt es sich um eine Verkleinerung.

Artikel lesen

Sehnenviereck

Besitzt ein Viereck einen Umkreis, so nennt man es Sehnenviereck.
Alle gleichschenkligen Trapeze, alle Rechtecke und damit auch alle Quadrate besitzen einen Umkreis.
Unter dem Umkreis eines n-Ecks versteht man den Kreis, der durch alle Eckpunkte des n-Ecks geht. Die Seiten des n-Ecks sind Sehnen des Umkreises.
Für alle Sehnenvierecke gilt folgender Satz:
Die Summe gegenüberliegender Winkel im Sehnenviereck ist 180°.

Artikel lesen

Seitenhalbierende im Dreieck

In einem Dreieck heißen die Strecken von einem Eckpunkt zu dem Mittelpunkt der jeweiligen Gegenseite Seitenhalbierende. Die Seitenhalbierenden werden mit s bezeichnet.
Die Seitenhalbierenden eines Dreiecks schneiden einander stets in einem Punkt S. Dieser Punkt heißt Schwerpunkt des Dreiecks.

Artikel lesen

Sinussatz

Der Sinussatz verbindet gegenüberliegende Größen (Seiten und Winkel) im allgemeinen Dreieck. Sind zwei einander gegenüberliegende Größen gegeben, so kann zu einer dritten die gegenüberliegende Größe berechnet werden.

Artikel lesen

Strahlensätze

Eine Figur aus zwei Strahlen mit gemeinsamem Anfangspunkt Z, die von zwei zueinander parallelen Geraden geschnitten wird, heißt Strahlensatzfigur mit dem Zentrum Z.

Artikel lesen

Streckenteilung

Mithilfe der Strahlensätze kann eine Strecke durch Konstruktion in einem beliebigen rationalen Verhältnis geteilt bzw. mit einem beliebigen rationalen Faktor vervielfacht werden.

Artikel lesen

Zentrische Streckung

Die zentrische Streckung ist eine Abbildung. Durch eine zentrische Streckung mit dem Streckungszentrum Z und dem Streckungsfaktor (Ähnlichkeitsfaktor) k wird eine Figur F in eine ähnliche überführt. Das Streckungszentrum Z ist dabei Fixpunkt, und jede Gerade durch Z ist eine Fixgerade der Abbildung.

Artikel lesen

Symmetrie

Eine Figur heißt symmetrisch genau dann, wenn sie bei einer von der identischen Abbildung verschiedenen Bewegung auf sich selbst abgebildet werden kann.

Artikel lesen

Kreiskegel

Werden alle Punkte eines Kreises mit einem Punkt S außerhalb der Kreisebene verbunden, so schließen diese Strecken gemeinsam mit dem Kreis einen Körper ein, der Kreiskegel genannt wird. Er hat einen Kreis als ebene Grundfläche und eine gekrümmte Mantelfläche.

Artikel lesen

Kreiszylinder

Einen Körper mit zwei zueinander kongruenten und parallelen Kreisen als Grund- und Deckfläche nennt man Kreiszylinder. Liegen die Mittelpunkte der Kreisflächen des Zylinders senkrecht übereinander, so handelt es sich um einen geraden Kreiszylinder. Man kann sich einen geraden Kreiszylinder auch durch Rotation eines Rechtecks um eine seiner Seiten entstanden vorstellen.

Artikel lesen

Kreiszylinder und Prismen, Darstellung

Kreiszylinder und Prismen können sowohl liegend als auch stehend im Schrägbild bzw. im Zweitafelbild dargestellt werden.
In Kavalierprojektion wird das Schrägbild sehr anschaulich dargestellt.

Bei einer senkrechten Zweitafelprojektion erfolgt die Darstellung gleichzeitig in zwei Ebenen.

Artikel lesen

Kugel

Die Kugel ist die Menge aller Punkte des Raums, die von einem festen Punkt M, dem Mittelpunkt der Kugel, den gleichen Abstand r haben. Der Abstand heißt Radius der Kugel.

Artikel lesen

Christian Goldbach

CHRISTIAN GOLDBACH (1690 bis 1764), deutscher Mathematiker
* 18. März 1690 Königsberg
† 1. Dezember 1764 St. Petersburg

CHRISTIAN GOLDBACH wirkte vor allem in St. Petersburg, so war er u. a. ständiger Sekretär der Petersburger Akademie. Auf mathematischem Gebiet beschäftigte er sich mit zahlentheoretischen Problemen, auf ihn geht die sogenannte goldbachsche Vermutung zurück.

Artikel lesen

Kugelteile

Wird eine Kugel durch eine Ebene oder mehrere Ebenen geschnitten, so entstehen verschiedene Schnittfiguren.
Beim Schnitt einer Kugel durch eine Ebene entstehen zwei Kugelabschnitte (Kugelsegmente). Verläuft diese Schnittebene genau durch den Kugelmittelpunkt, entstehen zwei Halbkugeln.

Artikel lesen

Wissenstest - Vierecke

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Vierecke".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Wissenstest - Winkel und Winkelpaare

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Winkel und Winkelpaare".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Pythagoreische Zahlentripel

Drei Zahlen a, b und c, für die a 2 + b 2 = c 2 gilt, bilden ein sogenanntes pythagoreisches Zahlentripel.

Pythagoreische Zahlentripel sind zum Beispiel:

  • 3, 4 und 5, denn 9 + 16 = 25
  • 5, 12 und 13, denn 25 + 144 = 169
  • 8, 15 und 17, denn 64 + 225 = 289
  • 9, 40 und 41, denn 81 + 1600 = 1681
Artikel lesen

Apollonios

APOLLONIOS VON PERGE (um 262 bis 190 v. Chr.), griechisch-hellenistischer Mathematiker und Astronom
* um 262 v. Chr. Perge (Pamphylien, heutige Türkei);
† um 190 v. Chr.

APOLLONIOS VON PERGE, auch „der große Geometer“ genannt, war ein Schüler EUKLIDs. Er beschäftigte sich sowohl mit arithmetischen Berechnungen als auch mit der Statistik. Besonders zu erwähnen ist sein Hauptwerk „Conica“, in dem er die Ergebnisse der antiken Kegelschnittlehre zusammenfasste.
APOLLONIOS lieferte auch wichtige Beiträge zur Astronomie. Speziell wandte er geometrische Modelle auf die Planentenbewegung an.

Seitennummerierung

  • Previous Page
  • Seite 11
  • Seite 12
  • Aktuelle Seite 13
  • Seite 14
  • Seite 15
  • Seite 16
  • Next Page

455 Suchergebnisse

Fächer
  • Mathematik (455)
Klassen
  • 5. Klasse (455)
  • 6. Klasse (455)
  • 7. Klasse (455)
  • 8. Klasse (455)
  • 9. Klasse (455)
  • 10. Klasse (455)
  • Oberstufe/Abitur (429)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025