Direkt zum Inhalt

884 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Grenzwertsätze für Zahlenfolgen

Bei der Untersuchung von Zahlenfolgen auf Konvergenz sind Grenzwertsätze von Nutzen. Mit deren Hilfe lassen sich Folgen komplizierterer Struktur auf einfachere Zahlenfolgen mit bekannten Grenzwerten zurückführen.

Artikel lesen

Nullfolgen

Unter den konvergenten Zahlenfolgen spielen die mit dem Grenzwert 0 eine besondere Rolle. Sie heißen Nullfolgen und sind u.a. für das Berechnen von Grenzwerten beliebiger Zahlenfolgen von Bedeutung. Die Betrachtung verschiedener Zahlenfolgen führt zu der Folgerung, dass jede geometrische Folge ( a n ) = a 1 ⋅ q n − 1     m i t     |   q   | < 1 eine Nullfolge ist.

Artikel lesen

Das Paradoxon von Achilles und der Schildkröte

Das Paradoxon von ACHILLES und der Schildkröte ist das wohl bekannteste der Paradoxa des griechischen Philosophen ZENON von Elea (490 bis 430 v.Chr.).
Der (scheinbare) Widerspruch der mathematischen Überlegungen ZENONS zur Wirklichkeit konnte allerdings erst mithilfe des Grenzwertbegriffes bzw. der Konvergenz unendlicher geometrischer Reihen geklärt werden.

Artikel lesen

Stetigkeit

Der Begriff Stetigkeit gehört zu den zentralen Ideen der Differenzial- und Integralrechnung. Wenn man in der Umgangssprache einen bestimmten Vorgang als „stetig“ bezeichnet, so meint man damit, dass er ohne Unterbrechung und ohne sprunghafte Veränderungen abläuft. Eine ganz ähnliche Bedeutung hat der Begriff in der Mathematik.

Artikel lesen

Sätze über stetige Funktionen

Funktionen, die an jeder Stelle ihres Definitionsbereiches stetig sind, nennt man stetige Funktionen oder auch global stetig.

Artikel lesen

Umgebungen

Der Begriff der Umgebung ist in der Analysis in verschiedenen Zusammenhängen von Bedeutung, z.B. bei der Definition des Grenzwertes von Zahlenfolgen oder Funktionen bzw. bei der Erklärung der Begriffe Maximum und Minimum von Funktionen.

Artikel lesen

Karl Theodor Wilhelm Weierstraß

* 31. Oktober 1815 Ostenfelde (Westfalen)
† 19. Februar 1897 Berlin

KARL WEIERSTRASS arbeitete vor allem auf den Gebieten der Funktionentheorie und der Analysis. Er lehrte an der Berliner Universität; zu seinen Schülern gehörten solche bekannten Mathematiker wie GEORG CANTOR und FELIX KLEIN.

Artikel lesen

Ableitung einer Funktion

Existiert an der Stelle x 0 des Definitionsbereiches einer Funktion f der Grenzwert
  lim h → 0 f ( x 0 + h ) − f ( x 0 ) h ,
so wird dieser als Ableitung oder Differenzialquotient von f an der Stelle x 0 bezeichnet.
Die Ableitung gibt den Anstieg des Funktionsgraphen an der Stelle x 0 an.

Artikel lesen

Berühmte mathematische Sätze

Das Theoriegebäude der Mathematik fußt auf nicht definierten Grundbegriffen sowie auf Aussagen, die im jeweiligen mathematischen System nicht zu beweisen sind, den sogenannten Axiomen. Über dieser Basis erhebt sich ein Geflecht von abgeleiteten Begriffen und durch Beweise gesicherten Aussagen, den mathematischen Sätzen.
Daneben stehen Aussagen, deren Wahrheitswert noch nicht bewiesen werden konnte und die deshalb den Charakter von Vermutungen tragen.
Der Beweis für den Großen fermatschen Satz und die Lösung des Vierfarbenproblems gelangen erst in jüngerer Vergangenheit. Demgegenüber stehen Beweise für die goldbachsche Vermutung oder die Vermutung über Primzahlzwillinge noch aus.

Artikel lesen

Ableitungen höherer Ordnung

Höhere Ableitungen einer Funktion f gestatten Rückschlüsse auf den Verlauf des Funktionsgraphen.
Ein Beispiel praktischer Anwendung höherer Ableitungen stellt die Untersuchung von Bewegungsabläufen in der Physik (etwa der Anfahrfunktion eines Kraftfahrzeuges) dar. Geschwindigkeit und Beschleunigung sind hier als erste bzw. zweite Ableitung des Weges nach der Zeit definiert.

Artikel lesen

Partielle Ableitungen

Für eine Funktion mit einer Gleichung y = f ( x ) , also für eine Funktion mit genau einer unabhängigen Variablen x, ist die erste Ableitung y ' = f ' ( x 0 ) an einer Stelle x 0 erklärt durch den Grenzwert des Differenzenquotienten an dieser Stelle:
f ' ( x 0 ) = lim h   →   0 f ( x 0 + h ) − f ( x 0 ) h

Interpretiert man diesen Grenzwert geometrisch, so gibt er den Anstieg der Tangente an den Graphen von f im Punkte P 0 ( x 0 ;     f ( x 0 ) ) an.

Es sei nun z = f ( x ,     y ) die Gleichung einer Funktion f mit zwei unabhängigen Variablen x und y. Betrachtet man diese Funktion für ein konstantes y = y 0 , so erhält man eine Funktion z = f ( x ,     y 0 ) mit nunmehr nur einer unabhängigen Variablen x, für die man wie oben angegeben den Grenzwert des Differenzenquotienten an einer Stelle x 0 aufstellen kann. Existiert dieser Grenzwert, so nennt man ihn die partielle Ableitung erster Ordnung der Ausgangsfunktion z = f ( x ,     y ) nach x an der Stelle ( x 0 ;     y 0 ) und schreibt:
f x ( x 0 ;     y 0 ) = lim h   →   0 f ( x 0 + h ,     y 0 ) − f ( x 0 ,     y 0 ) h

Artikel lesen

Ableitung der Kosinusfunktion

Im Folgenden wird gezeigt, dass die Kosinusfunktion f ( x ) = cos x im gesamten Definitionsbereich differenzierbar ist und die Ableitungsfunktion f ' ( x ) = −   sin x   besitzt.
Dazu betrachten wir den Graph der Kosinusfunktion f ( x ) = cos x       ( x ∈ ℝ ) im Intervall von 0 bis 2   π .

Artikel lesen

Ableitungsfunktion

Existiert der Differenzialquotient einer Funktion y = f ( x ) für alle Punkte eines Intervalls, so ist die Funktion im ganzen Intervall differenzierbar. Jedem x-Wert des Intervalls ist ein Wert des Differenzialquotienten zugeordnet, der also wiederum eine Funktion von x ist. Man nennt diese die abgeleitete Funktion oder Ableitungsfunktion (oder kurz Ableitung):
  f ′ :     x → f ′ ( x )
Anmerkung: f heißt Stammfunktion zu f ′ .

Artikel lesen

Ableitung der Sinusfunktion

Im Folgenden wird gezeigt, dass die Sinusfunktion f ( x ) = sin x im gesamten Definitionsbereich differenzierbar ist und die Ableitungsfunktion f ' ( x ) = cos x besitzt.
Dazu betrachten wir den Graph der Sinusfunktion f ( x ) = sin x       ( x ∈ ℝ ) im Intervall von 0 bis 2   π .

Artikel lesen

Ableitung der Tangens- und der Kotangensfunktion

Im Folgenden wird gezeigt, dass die Tangensfunktion f ( x ) = tan x in ihrem gesamten Definitionsbereich ( x ∈ ℝ ;       x ≠ π 2 + k ⋅ π ;       k ∈ ℤ ) differenzierbar ist und dort die Ableitungsfunktion f ' ( x ) = 1 cos 2 x       b z w .       f ' ( x ) = 1 + tan 2 x besitzt.
Die Ableitung der Kotangensfunktion kann auf analogem Wege ermittelt werden.

Dazu betrachten wir den Graph der Tangensfunktion f ( x ) = tan x       ( x ∈ ℝ ;     x ≠ π 2 + k ⋅ π ;     k ∈ ℤ ) im Intervall von 0 bis 2   π .

Artikel lesen

Geschichte der Analysis

Die Analysis (oder auch Infinitesimalrechnung) beschäftigt sich im Wesentlichen mit der Differenzial- und Integralrechnung.
Ausgangspunkt für die Integralrechnung war das schon in der Antike betrachtete Problem der Bestimmung des Inhalts von Flächen und Körpern, wie etwa von Rotationskörpern.
Die Differenzialrechnung hat ihre Wurzeln dagegen im Tangentenproblem, mit dem sich Mathematiker im 17. Jahrhundert intensiver beschäftigten.
Im 18. Jahrhundert wurde der Zusammenhang zwischen dem Differenzieren und Integrieren erkannt und im Hauptsatz der Differenzial- und Integralrechnung formuliert. Hierzu trugen wesentlich ISAAC NEWTON und GOTTFRIED WILHELM LEIBNIZ bei.

Artikel lesen

Asymptoten (asymptotische Linien)

Untersucht man ganzrationale Funktionen für beliebige große bzw. kleine x-Werte, so werden auch die Funktionswerte beliebig groß oder klein:
Für x → ±   ∞ gilt |   f ( x )   | = +   ∞ .

Völlig verschieden davon ist das Verhalten gebrochenrationaler Funktionen der Form
f(x) = p(x) q(x) .

Deren Graphen schmiegen sich für beliebig groß bzw. klein werdende Argumente immer mehr an eine Gerade an. Derartige Geraden werden Asymptoten des Graphen der Funktion genannt. Man unterscheidet zwischen waagerechten (horizontalen) und schiefen Asymptoten sowie asymptotischen Linien bzw. Kurven.

Anmerkung: Gelegentlich werden auch die Polgeraden bei vorhandenen Definitionslücken als senkrechte (vertikale) Asymptoten bezeichnet.

Artikel lesen

Johann Bernoulli

* 6. August 1667 (27. Juli 1667) Basel
† 1. Januar 1748 Basel

JOHANN BERNOULLI trug wesentlich zur Herausbildung moderner Auffassungen zur Infinitesimalrechnung und deren Verbreitung in Europa bei. Gemeinsam mit seinem älteren Bruder JAKOB und in Korrespondenz mit GOTTFRIED WILHELM LEIBNIZ entwickelte er den sogenannten „Leibnizschen Calculus“ weiter, der Begriff Integralrechnung geht auf ihn zurück.
Intensiv beschäftigte sich JOHANN BERNOULLI mit Anwendungen der Infinitesimalrechung auf physikalische und technische Probleme, zum Beispiel untersuchte er das Verhalten strömender Flüssigkeiten.

Artikel lesen

Definitionslücken

Definitionslücken treten insbesondere bei gebrochenrationalen Funktionen auf. Alle x-Werte, für die die Nennerfunktion den Wert Null annimmt, werden als Definitionslücken bezeichnet.
Man unterscheidet zwischen Polstellen und hebbaren Definitionslücken.

Artikel lesen

Differenziationsverfahren

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Differenziationsverfahren".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Differenzierbarkeit von Funktionen

Die Definitionen von Differenzierbarkeit und Stetigkeit führen zu der Folgerung, eine Funktion f kann an einer Stelle x 0 stetig, aber nicht differenzierbar sein.
Ist f in x 0 allerdings differenzierbar, dann ist sie in x 0 auch stetig.

Artikel lesen

Grafisches Differenzieren

Die Ableitung einer Funktion f an einer Stelle x 0 gibt bekanntermaßen den Anstieg der Tangente an den Graphen der Funktion im Punkt P 0 ( x 0 ;   f ( x 0 ) ) an.
Ebenso spricht man vom Anstieg des Graphen im Punkt P 0 .
Im Folgenden wird ein Verfahren zur Bestimmung der Ableitung an einer Stelle x 0 mittels zeichnerischen oder grafischen Differenzierens vorgestellt.

Artikel lesen

Das elektrische Feld in einem Koaxialkabel

Die folgenden Probleme zum elektrischen Feld in einem Koaxialkabel stellen Anwendungen zur Logarithmusfunktion und zur Differenzialrechnung dar. Berechnet wird die elektrische Feldstärke in einem Koaxialkabel bzw. die Dimensionierung eines solchen Kabels, damit die Gefahr von Überschlägen möglichst gering ist.
Die Probleme sind als Aufgaben formuliert und durch Lösungen ergänzt.

Artikel lesen

Ermitteln lokaler Extrema

Im Folgenden wird ein Anwendungsbeispiel zu lokalen Extrema betrachtet.

Artikel lesen

Extremwertprobleme in der Wirtschaft

Viele Prozesse im Wirtschaftsleben lassen sich mithilfe von Funktionen beschreiben. Durch eine mathematische Modellbildung ist man dann in der Lage, über Optimierungsmöglichkeiten in dem vorliegenden Sachverhalt gezielt nachzudenken. Oft steht dabei die Frage der Gewinnmaximierung bzw. die Minimierung der Produktions- oder Vertriebskosten im Mittelpunkt.

Das Vorgehen beim Lösen einer solchen Extremwertaufgabe soll im Folgenden durch ein Beispiel verdeutlicht werden.

Seitennummerierung

  • Previous Page
  • Seite 24
  • Seite 25
  • Aktuelle Seite 26
  • Seite 27
  • Seite 28
  • Seite 29
  • Next Page

884 Suchergebnisse

Fächer
  • Mathematik (884)
Klassen
  • 5. Klasse (455)
  • 6. Klasse (455)
  • 7. Klasse (455)
  • 8. Klasse (455)
  • 9. Klasse (455)
  • 10. Klasse (455)
  • Oberstufe/Abitur (429)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025