Direkt zum Inhalt

105 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Folgen, Partialsummen

Unter der n-ten Partialsumme s n einer Zahlenfolge ( a n ) versteht man die Summe der Folgenglieder von a 1       b i s       a n .
Die immer weiter fortgesetzte Partialsumme einer (unendlichen) Zahlenfolge nennt man eine (unendliche) Reihe.

Artikel lesen

Potenzfunktionen, allgemein

Funktionen mit Gleichungen
der Form y = x n     ( x   ∈ ℝ ,     n ∈   ℤ )
heißen Potenzfunktionen.
Es ist zweckmäßig, eine Einteilung der Potenzfunktionen in Abhängigkeit vom Exponenten n vorzunehmen.

Artikel lesen

Lineare Gleichungssysteme

Gleichungssysteme mit mehr als zwei Unbekannten können z. B. mithilfe des gaußschen Algorithmus oder der cramerschen Regel gelöst werden. Die cramersche Regel basiert auf der Berechnung von Determinanten und dem Verfahren von SARRUS.

Artikel lesen

Lineare Gleichungssysteme, Grafisches Lösen

Ein lineares Gleichungssystem mit den beiden Variablen x und y besteht aus zwei linearen Gleichungen (I und II) mit jeweils den Variablen x und y.
I     a 1 x + b 1 y = c 1     a 1 ,b 1 ,c 1 ∈ ℚ II       a 2 x + b 2 y = c 2       a 2 ,b 2 ,c 2 ∈ ℚ
Zur Lösungsmenge eines linearen Gleichungssystems gehören die Zahlenpaare, die sowohl zur Lösungsmenge der Gleichung I als auch zur Lösungsmenge der Gleichung II gehören.

Artikel lesen

Einsetzungsverfahren

Wenn eine der beiden linearen Gleichungen in die andere Gleichung des linearen Gleichungssystems „eingesetzt“ wird, um die Lösung des Gleichungssystems zu bestimmen, so nennt man dieses Verfahren Einsetzungsverfahren.

Ein lineares Gleichungssystem mit zwei Variablen wird mit dem Einsetzungsverfahren in folgenden Schritten gelöst:

  1. Es wird – falls nötig – eine der beiden linearen Gleichungen nach einer der beiden Variablen umgeformt.
  2. Die umgeformte Gleichung wird für die Variable in die andere Gleichung eingesetzt.
  3. Die so entstandene lineare Gleichung mit nur einer Variablen wird gelöst.
  4. Die erhaltene Lösung wird in eine der beiden Ausgangsgleichungen eingesetzt und die Gleichung gelöst.
Artikel lesen

Periodizität von Funktionen

Eine Funktion f heißt periodische Funktion, wenn es eine Zahl b (mit b > 0) gibt, sodass mit x auch x + b zum Definitionsbereich D gehört und für jedes x ∈ D gilt:
  f   ( x ) = f   ( x + b )
Die kleinste derartige Zahl b wird Periode von f genannt.

Artikel lesen

Additionsverfahren

Werden die beiden linearen Gleichungen eines Gleichungssystems addiert, um die Lösung des Gleichungssystems zu erhalten, so wird dieses Verfahren Additionsverfahren genannt.

Ein lineares Gleichungssystem mit zwei Variablen wird mit dem Additionsverfahren in folgenden Schritten gelöst:

  1. Falls nötig wird eine Gleichung oder werden beide lineare Gleichungen so umgeformt, dass bei Addition der Gleichungen eine der beiden Variablen wegfällt.
  2. Beide Gleichungen werden addiert.
  3. Die entstandene lineare Gleichung mit nur einer Variablen wird gelöst.
  4. Die so erhaltene Lösung wird in eine der beiden Ausgangsgleichungen eingesetzt und diese Gleichung gelöst.
Artikel lesen

Gleichsetzungsverfahren

Werden die beiden linearen Gleichungen des linearen Gleichungssystems nach derselben Variablen aufgelöst und die entsprechenden Terme gleichgesetzt, um die Lösung des Gleichungssystems zu bestimmen, so nennt man dieses Verfahren Gleichsetzungsverfahren.

Ein lineares Gleichungssystem mit zwei Variablen wird mit dem Gleichsetzungsverfahren in folgenden Schritten gelöst:

  1. Es werden – falls nötig – beide lineare Gleichungen nach derselben Variablen aufgelöst.
  2. Die erhaltenen Terme werden gleichgesetzt.
  3. Die so entstandene lineare Gleichung mit nur einer Variablen wird gelöst.
  4. Die erhaltene Lösung wird in eine der beiden Ausgangsgleichungen eingesetzt und die Gleichung gelöst.
Artikel lesen

Gleichungen, Lösen

Treten Variablen in einer Gleichung auf, so werden diese erst dann zu einer wahren oder falschen Aussage, wenn die Variablen mit Zahlen oder Größen aus einer Grundmenge belegt werden.
Das Bestimmen aller Zahlen, die die Gleichung zu einer wahren Aussage machen, heißt Lösen der Gleichung. Jede solche Zahl heißt Lösung und alle diese Zahlen zusammen bilden die Lösungsmenge der Gleichung. Die Lösungsmenge wird mit L bezeichnet.

Artikel lesen

Winkelfunktionen, y = a sin (bx + c)

Besonders bei der mathematischen Beschreibung von Schwingungsvorgängen wird häufig von Winkelfunktionen, speziell der Sinusfunktion mit Gleichungen der Form y = f ( x ) = a ⋅ sin   ( b x + c ) Gebrauch gemacht.
Bezogen auf den Graphen von f nennt man deshalb a auch die Amplitude der Sinuskurve, b deren Frequenz und c ihre Phasenverschiebung.

Artikel lesen

Zum Begriff „Bestimmtes Integral“

Im Folgenden betrachten wir Überlegungen zur Definition des Begriffes „Bestimmtes Integral“.

Artikel lesen

Kugel und Gerade

Für die Lage einer Kugel bezüglich einer Geraden gibt es die folgenden Möglichkeiten:

  1. Kugel und Gerade haben keinen Punkt gemeinsam (Fall 1);
  2. Kugel und Gerade haben genau einen Punkt gemeinsam (Fall 2);
  3. Kugel und Gerade haben genau zwei Punkte gemeinsam (Fall 3)

Im Fall 1 nennt man die Gerade eine Passante, im Fall 2 eine Tangente und im Fall 3 eine Sekante.

Artikel lesen

Kugelgleichungen

Ausgehend vom Begriff der Kugel lassen sich mithilfe eines kartesischen Koordinatensystems Gleichungen (in vektorieller Form und als Koordinatengleichungen) entwickeln. Eine Kugel kann auch durch eine Parametergleichung beschrieben werden.

Artikel lesen

Lagebeziehungen zweier Kugeln

Zwei Kugeln im Raum können – abgesehen von dem Fall, dass beide Kugeln identisch sind – verschiedene Positionen zueinander einnehmen.

Artikel lesen

Kugel und Tangentialebene

In jedem Punkt P 0 einer Kugel gibt es unendlich viele Tangenten, die alle senkrecht zum Radius der Kugel sind. Diese Tangenten bilden die Tangentialebene an die Kugel im Punkt P 0 .

Artikel lesen

Kugel und Tangentialkegel

Durch einen beliebigen Punkt P außerhalb einer Kugel k lassen sich unendlich viele Geraden so legen, dass jede von ihnen eine Tangente der Kugel k ist.
Diese Geraden – also die Tangenten – bilden einen (doppelten) Kreiskegel, den Tangentialkegel der Kugel k mit der Spitze P.
Die Berührungspunkte aller Tangenten, die einen Tangentialkegel bilden, liegen auf einem Kreis, also in einer Ebene.

Artikel lesen

Schnittwinkel zweier Geraden im Raum

Schneiden zwei Geraden g 1       u n d       g 2 des Raumes einander in einem Punkt S, so bilden sie in der von ihnen aufgespannten Ebene zwei Paare zueinander kongruenter Scheitelwinkel ψ       b z w .       ψ ' . Den kleineren dieser beiden Winkel nennt man den Schnittwinkel von g 1       u n d       g 2 .

Artikel lesen

Schnittwinkel einer Geraden mit einer Ebene

Schneidet eine Gerade g die Ebene ε im Punkt S, so versteht man unter dem Schnittwinkel ϕ von g und ε den kleinsten Winkel, den eine beliebige Gerade aus ε , die durch S geht, mit g bildet.
Für die Berechnung von ϕ wird die Tatsache genutzt, dass ϕ der Komplementwinkel des Winkels α zwischen einem Normalenvektor n → von ε und einem Richtungsvektor a → von g ist. Es gilt ϕ = 90 ° − α .

Artikel lesen

Schnittwinkel zweier Ebenen

Schneiden zwei Ebenen ε 1       u n d       ε 2 einander in einer Geraden g, so bezeichnet man als Schnittwinkel ϕ dieser Ebenen den Winkel zwischen denjenigen beiden Geraden, die eine dritte, zur Schnittgeraden senkrechte Ebene aus ε 1       u n d       ε 2 „herausschneidet“. Man spricht manchmal auch von dem zwischen ε 1       u n d       ε 2 liegenden „Keilwinkel“.

Artikel lesen

Matrizengleichungen

Eine Gleichung, bei der die Elemente einer unbekannten Matrix zu bestimmen sind, heißt Matrizengleichung. Die Lösungen der Grundgleichungen   A ⋅ X = B ,       X ⋅ A = B       b z w .       A ⋅ X ⋅ B = C können sofort angegeben werden. Kompliziertere Gleichungen lassen sich mittels der Matrizenoperationen Addition, Subtraktion und Multiplikation (evtl. mit der inversen Matrix) in Grundgleichungen überführen.

Artikel lesen

Addition und Vielfachbildung von Matrizen

Bei Rechenoperationen mit Matrizen sind aufgrund der Entstehungsweise der Matrix als Ergebnis einer Abstraktion inhaltliche und formale Bedingungen einzuhalten.

Eine Addition (bzw. Subtraktion) von Matrizen ist nur für Matrizen gleichen Typs erklärt. Sie erfolgt elementeweise. Die Addition von Matrizen ist kommutativ, assoziativ und umkehrbar. Das skalare Vielfache einer Matrix erhält man, indem jedes Element der Matrix mit dem betreffenden Skalar multipliziert wird.

Artikel lesen

Multiplikation von Matrizen

Neben der Vielfachbildung von Matrizen, d.h. der Multiplikation einer Matrix mit einer reellen Zahl (einem Skalar), ist es auch möglich, eine Matrix mit einem Vektor bzw. zwei Matrizen miteinander zu multiplizieren.
Im Gegensatz zur Vielfachbildung sind diese Multiplikationen allerdings an bestimmte Voraussetzungen hinsichtlich des Typs der Matrizen bzw. der Dimension des Vektors gebunden.

Artikel lesen

Binomialkoeffizienten

Gilt es, Wahrscheinlichkeiten zum Beispiel im Zusammenhang mit der Binomialverteilung oder mit dem Abzählprinzip für die Gleichverteilung zu berechnen, werden als Binomialkoeffizienten bezeichnete Terme verwandt. Es sind dies die Koeffizienten, die beim Entwickeln der n-ten Potenz eines Binoms ( a + b ) auftreten.
Sie werden u.a. angewandt, um Wahrscheinlichkeiten (etwa im Zusammenhang mit der Binomialverteilung oder mit dem Abzählprinzip für Mengen) zu berechnen.

Artikel lesen

Approximation einer Binomialverteilung

Bei der praktischen Anwendung der Binomialverteilung B n ;   p treten nicht selten große oder sogar sehr große Werte von n (etwa n = 10   000 ) auf, wodurch das Berechnen der Wahrscheinlichkeiten aufgrund der dabei zu ermittelnden Fakultäten und Potenzen sehr zeitaufwendig wird. Schon frühzeitig versuchte man deshalb, Näherungsformeln für die Binomialverteilung zu finden.

Hier ist es (unter bestimmten Voraussetzungen) günstig, die Binomialverteilung durch eine POISSON-Verteilung oder eine Normalverteilung zu approximieren und entsprechende Näherungsformeln anzuwenden.

Artikel lesen

Kenngrößen der Binomialverteilung

Kenngrößen von Zufallsgrößen dienen deren quantitativer Charakterisierung. Wir betrachten im Folgenden binomialverteilte Zufallsgrößen.

Seitennummerierung

  • Aktuelle Seite 1
  • Seite 2
  • Seite 3
  • Seite 4
  • Seite 5
  • Next Page

105 Suchergebnisse

Fächer
  • Mathematik (105)
Klassen
  • 5. Klasse (10)
  • 6. Klasse (10)
  • 7. Klasse (10)
  • 8. Klasse (10)
  • 9. Klasse (10)
  • 10. Klasse (10)
  • Oberstufe/Abitur (95)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025