Direkt zum Inhalt

132 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Quadrat, allgemein

Ein Viereck, bei dem je zwei benachbarte Seiten zueinander senkrecht und gleich lang sind, heißt Quadrat.
Gleichwertig sind auch folgende Aussagen:

  • Ein Quadrat ist ein Rechteck mit gleich langen Seiten.
  • Ein Quadrat ist eine Raute (ein Rhombus) mit rechten Winkeln.

Das Quadrat ist ein regelmäßiges Viereck.

Artikel lesen

Raute

Ein Viereck mit vier gleich langen Seiten heißt Raute (Rhombus). Neben den Eigenschaften eines Parallelogramms (Parallelität der gegenüberliegenden Seiten) besitzt die Raute folgende Merkmale:
1. Die Seiten sind gleich lang.
2. Die Diagonalen stehen senkrecht aufeinander.
3. Die Diagonalen halbieren die Innenwinkel.

Artikel lesen

Rechteck


Ein Parallelogramm mit einem rechten Winkel ist ein Rechteck.
Für das Rechteck gilt demzufolge:

  • Die gegenüberliegenden Seiten sind gleich lang und zueinander parallel.
  • Benachbarte Seiten sind rechtwinklig zueinander.
  • Alle vier Innenwinkel sind gleich groß. Sie betragen 90°.
  • Die Diagonalen sind gleich lang und halbieren einander.
Artikel lesen

Kosinussatz

Der Kosinussatz gehört neben dem Sinussatz zu den wichtigsten Sätzen der Trigonometrie. Der Kosinussatz drückt eine Beziehung zwischen den drei Seiten und einem Winkel im Dreieck aus.
Man kann aus zwei Seiten und dem von ihnen eingeschlossenen Winkel die dritte Seite berechnen oder aus drei Seiten einen Winkel.

Artikel lesen

Berechnungen am Kreis

Um den Umfang u eines Kreises mit dem Durchmesser d zu bestimmen, kann man von den Umfängen eines einbeschriebenen und eines umbeschriebenen Vielecks ausgehen, z. B. eines regelmäßigen Sechsecks. Für den Umfang des Kreises gilt:
u = π ⋅ d = π ⋅ 2 r

Artikel lesen

Höhensatz

Die Satzgruppe des Pythagoras, zu der der Höhensatz gehört, zählt wegen ihrer großen Bedeutung für Berechnungen und Beweisführungen zu den berühmtesten der Planimetrie.

Artikel lesen

Dreiecksarten

Ein Dreieck ist ein geschlossener Streckenzug aus drei Strecken. Die drei Strecken sind die Seiten des Dreiecks. Je zwei Seiten haben einen Eckpunkt gemeinsam.

Artikel lesen

Drachenviereck

Ein Drachenviereck ist ein Viereck, in dem jeweils die beiden Seiten gleich lang sind, die einen Eckpunkt auf der Symmetrieachse gemeinsam haben. Die Diagonalen stehen in einem (gleichschenkligen) Drachenviereck senkrecht aufeinander. Eine von ihnen ist die Symmetrieachse.

Artikel lesen

Satz des Euklid

Die Satzgruppe des Pythagoras, zu der der Satz des Euklid (Kathetensatz) gehört, zählt wegen ihrer großen Bedeutung für Berechnungen und Beweisführungen zu den berühmtesten der Planimetrie.

Artikel lesen

Fläche

Die Fläche einer ebenen Figur umfasst alle Punkte, die sich im Inneren oder auf dem Rand der Figur befinden.
Zwei Figuren sind flächengleich (die Flächen sind gleich groß, die Figuren haben den gleichen Flächeninhalt), wenn sie so in Teilflächen zerlegt werden können, dass jede der Teilflächen in jeder Figur enthalten ist.
Zum Bestimmen des Flächeninhalts einer Figur kann diese mit Einheitsflächen, zum Beispiel mit Quadraten, ausgelegt werden. Die Maßzahl gibt dann die Anzahl der Einheitsquadrate an, die zum Auslegen der Figur benötigt werden.
Der Flächeninhalt eines Rechtecks kann als Produkt der Seitenlängen berechnet werden.

Artikel lesen

Allgemeine Wurzelfunktionen

Funktionen mit Gleichungen der Form   y = f ( x ) = x m n   ( x ≥ 0 ;       m ,   n ∈ ℕ ;     m ≥ 1 ;     n ≥ 2 )
heißen Wurzelfunktionen.
Wurzelfunktionen sind spezielle Potenzfunktionen, wenn man als Exponenten nicht nur ganze Zahlen, sondern auch gebrochene Zahlen zulässt:
  x m n = x m n   ( x ≥ 0 ;     m ,   n ∈ ℕ ;     m ≥ 1 ;     n ≥ 2 )
Als Wurzelfunktionen bezeichnet man im weiteren Sinne ebenfalls alle Funktionen, in deren Funktionsterm das Argument x als Bestandteil eines Wurzelradikanden auftritt, z. B. also:
  f ( x ) = x − 2 4 ,     g ( x ) = 5 4 − x 3

Artikel lesen

Höhen im Dreieck

Die Lotstrecken von den Eckpunkten auf die jeweilige Gegenseite (bei stumpfwinkligen Dreiecken auf deren Verlängerungen) heißen Höhen und werden mit h bezeichnet. In einem Dreieck schneiden sich die drei Höhen in einem Punkt, dem Höhenschnittpunkt H.

Artikel lesen

Spezielle Wurzelfunktion

Besonders häufig treten Funktionen mit Gleichungen der Form y = f ( x ) = x 2 = x auf. Die Funktion f ( x ) = x ist die Umkehrfunktion (inverse Funktion) zu y = g ( x ) = x 2 , jedoch nur für x ≥ 0 , da die Gleichung g ( x ) = x 2 keine umkehrbar eindeutige (eineindeutige) Zuordnung beschreibt.

Artikel lesen

Quadratische Funktionen, Graphen

Der Graph einer quadratischen Funktion mit der Gleichung y = f   ( x ) = a x 2 + b x + c ist für a = 1 eine (ggf. verschobene) Normalparabel.
Für a ≠ 1 erhalten wir als Graph im Vergleich zum Graphen von y = f   ( x ) = x 2 + b x + c eine (in y-Richtung) gestreckte bzw. gestauchte und gegebenenfalls an der x-Achse gespiegelte Parabel.

Artikel lesen

Quadratische Funktionen, Nullstellen

Wir betrachten zunächst quadratische Funktionen der Form y = f ( x ) = a x 2 + b x + c .
Man erhält y = f ( x ) = x 2 + b x + c bzw. durch Umbenennung
y = f ( x ) = x 2 + p x + q ,     p ,   q ∈ ℝ .
Um den Zusammenhang zwischen den reellen Zahlen p, q und den Nullstellen der jeweiligen quadratischen Funktionen bzw. den Schnittpunkten ihrer Graphen mit der x-Achse zu erkennen, ist es zweckmäßig, eine Fallunterscheidung durchzuführen.

Artikel lesen

andere einwertige Alkohole

In diesem Artikel werden die Eigenschaften und Verwendungszwecke unterschiedlicher einwertiger Alkohole (außer Methanol und Ethanol) beschrieben. Ab dem Propanol können erste Konstitutionsisomere auftreten. Bis zum Hexanol werden derartige Isomere dargestellt.

Schon an diesen wenigen Beispielen sind grundsätzliche Gemeinsamkeiten, aber auch wesentliche Unterschiede in Eigenschaften und Verwendung erkennbar.

Außerdem lassen sich Kenntnisse über homologe Reihen anwenden. An dem Beispiel der Alkanole mit endständiger Hydroxylgruppe wird darauf genauer eingegangen.

Artikel lesen

Winkelfunktionen am rechtwinkligen Dreieck

Bei allen zueinander ähnlichen rechtwinkligen Dreiecken sind die Quotienten aus den Längen von je zwei einander entsprechenden Seiten gleich.
Für die nebenstehend bzw. in Bild 1 dargestellten Dreiecke A 1   B 1   C 1 ,       A 1   B 2   C 2       und       A 1   B 3   C 3 , die einander ähnlich sind, gilt nach den Ähnlichkeitssätzen:
  B 1 C 1 ¯ A 1 B 1 ¯ = B 2 C 2 ¯ A 1 B 2 ¯ = B 3 C 3 ¯ A 1 B 3 ¯ A 1 C 1 ¯ A 1 B 1 ¯ = A 1 C 2 ¯ A 1 B 2 ¯ = A 1 C 3 ¯ A 1 B 3 ¯ B 1 C 1 ¯ A 1 C 1 ¯ = B 2 C 2 ¯ A 1 C 2 ¯ = B 3 C 3 ¯ A 1 C 3 ¯
Solche für zueinander ähnliche rechtwinklige Dreiecke übereinstimmenden Quotienten (Verhältnisse) werden mit Bezug auf einen der beiden nicht rechten Winkel als der Sinus, der Kosinus, der Tangens bzw. der Kotangens dieses Winkels bezeichnet.

Artikel lesen

Winkelfunktionen, Graphen und Eigenschaften

Graphen von Winkelfunktionen kann man auf die bekannte Weise unter Verwendung einer Wertetabelle zeichnen.
Es ist allerdings auch möglich, ausgehend von der Definition dieser Funktionen am Einheitskreis die zu einem Winkel als Abszisse eines Graphenpunktes gehörende Ordinate sofort aus der Zeichnung zu entnehmen. Gestützt auf diesen Weg der Konstruktion der Funktionsgraphen lassen sich einige wichtige Eigenschaften der Winkelfunktionen ermitteln.

Artikel lesen

Fakultätsschreibweise

Das Symbol n! (gesprochen: n-Fakultät) wird als abkürzende Schreibweise für das Produkt der natürlichen Zahlen von 1 bis n definiert. Insbesondere Formeln der Kombinatorik lassen sich mithilfe der Fakultätsschreibweise in rationeller Form angeben.

Artikel lesen

Mittelwerte

Unter dem Mittelwert zweier oder mehrerer Zahlen wird meist das arithmetische Mittel (bzw. der Durchschnitt) verstanden. Darüber hinaus sind allerdings mit dem geometrischen und dem harmonischen Mittel noch weitere Mittelbildungen möglich.

Artikel lesen

Permutationen

Unter einer Permutation versteht man eine Anordnung, bei der alle n Elemente verwendet (d. h. auf n Plätze verteilt) werden. Man unterscheidet Permutationen ohne und mit Wiederholung (der Elemente).

Artikel lesen

Pseudozufallszahlen

Die Simulation zufälliger Vorgänge aus der Praxis ist oft sehr mühsam und zeitaufwendig. Das gilt besonders auch für das Erzeugen von Zufallszahlen und das Arbeiten mit diesen Zahlen (ggf. unter Verwendung entsprechender Tabellen).
Heute ist es möglich, von Computern erzeugte Zufallszahlen, sogenannte Pseudozufallszahlen, zu nutzen. Grundlage für deren Erzeugung ist ein Algorithmus, der Ziffernfolgen liefert, die annähernd dieselben Eigenschaften haben wie echte Zufallszahlen.

Artikel lesen

Umkehrfunktion

Eine Funktion heißt umkehrbar eindeutige (eineindeutige) Funktion, wenn nicht nur jedem Argument eindeutig ein Funktionswert zugeordnet ist, sondern auch umgekehrt zu jedem Funktionswert genau ein Argument gehört.

Artikel lesen

Winkelfunktionen am Kreis

Jedem spitzen Winkel in einem rechtwinkligen Dreieck sind umkehrbar eindeutig Seitenverhältnisse zugeordnet, die man als Sinus, Kosinus, Tangens bzw. Kotangens des betreffenden Winkels bezeichnet. Es handelt sich hierbei also um Funktionen mit der Menge der Winkel 0 < x < π 2 als Definitionsbereich und der Menge der Seitenverhältnisse als Wertebereich.
Damit eine Zahl-Zahl-Beziehung entsteht, verwenden wir das Bogenmaß der Winkel.

Artikel lesen

Regelmäßige Vielecke

Alle regelmäßigen Vielecke (n-Ecke) besitzen gleich lange Seiten und gleich große Innenwinkel und sind damit konvex.
Die Winkelsumme im n-Eck beträgt (n – 2) · 180°.
Im regelmäßigen n-Eck ist diese Winkelsumme gleichmäßig auf alle n Innenwinkel des n-Ecks verteilt.

Seitennummerierung

  • Previous Page
  • Seite 1
  • Seite 2
  • Seite 3
  • Aktuelle Seite 4
  • Seite 5
  • Seite 6
  • Next Page

132 Suchergebnisse

Fächer
  • Chemie (20)
  • Mathematik (112)
Klassen
  • 5. Klasse (132)
  • 6. Klasse (132)
  • 7. Klasse (132)
  • 8. Klasse (132)
  • 9. Klasse (132)
  • 10. Klasse (132)
  • Oberstufe/Abitur (181)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2026